
University of Waterloo – CO 353 Practice Final (Winter 2018)

Course: CO 353 – Computational discrete optimization

Date and time of exam: Tuesday April 24, 2018 – 12:30 PM to 3:00 PM

Duration of exam: 2h30

Location: PAC Upper 9

Exam type: Faculty of Math approved calculators can be used

Closed book – no other materials allowed

Your answers must be stated and justified in a clear and logical form, and you must show all of your steps in order

to receive full marks. You may use any result from class without proof, unless you are being asked to prove this

result. You will be graded not only on correctness, but also on clarity of exposition. No collaboration is allowed.

Question 1a Consider the following algorithm, that takes as an input a matrix A ∈ Zm×n, with Amax :=

maxi,j |Aij |.
for i = 1, . . . n

| for j = 1, . . . n

| | v := 0

| | for k = 1, . . .m

| | | v := v +AikAjk

| | Gij := v

return G

1. Give the encoding length L of the input, in big-O notation.

2. Using the arithmetic model, give the algorithmic complexity of the algorithm, in big-O notation.

3. Is the complexity polynomial in the input length L? If it is, give the polynomial in big-O notation. Otherwise,

explain why it is not polynomial.

Question 1b Consider the following algorithm, that takes a positive number a ∈ Z in input.

f := {}
r := a

i := 2

while i ≤ r
| if (r/i) ∈ Z
| | f := f ∪ {i}
| | r := r/i

| else

| | i := i+ 1

return f

1. Give the encoding length L of the input, in big-O notation.

2. Using the arithmetic model, give the algorithmic complexity of the algorithm, in big-O notation.

3. Is the complexity polynomial in the input length L? If it is, give the polynomial in big-O notation. Otherwise,

explain why it is not polynomial.
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Question 2a Indicate whether the following statement is true or false. If it is true give a proof, otherwise give

a counter-example.

Consider a connected graph G = (V,E) with edge weights ce for all e ∈ E. Let S ( V be a nonempty

node set such that |δ(S)| ≥ 2, and let e ∈ δ(S) be such that ce > cf for all f ∈ δ(S) \ {e}. Then, for

any minimum spanning tree T (V, F ), we have e /∈ F .

Question 2b Indicate whether the following statement is true or false. If it is true give a proof, otherwise give

a counter-example.

Consider a connected graph G = (V,E) with edge weights ce for all e ∈ E. Let e ∈ E be an edge such

that ce < cf for all f ∈ E \ {e}. Then, there exists a minimum spanning tree T (V, F ) such that e ∈ F .

Question 2c Given a connected graph G = (V,E), with edge costs ce > 0,∀e ∈ E, consider the following

algorithm:

Sort the edges so that ce1 ≥ ce2 ≥ · · · ≥ cen
F := E

for i = 1, . . . , n

| if H = (V, F \ {ei}) is connected

| | F := F \ {ei}
return H = (V, F ).

Does this algorithm solve the minimum spanning tree problem? If it does, prove that it is correct (i.e., prove that

the output is a spanning tree and that it has minimum cost). If it does not, give a counterexample (i.e., show an

example where the output is not a spanning tree or the cost is not minimum).

Question 3a We are given a set S = {1, . . . , n} and some nonempty subset ∅ ( A ⊆ S. We then define

I = {B ⊆ S : A 6= B}. Indicate whether or not (S, I) is a matroid. If it is a matroid, show that it satisfies all the

necessary conditions for being one. Otherwise, give a counter-example and indicate which condition is not satisfied.

Question 3b We are given a set S = {1, . . . , n} and some nonempty subset ∅ ( A ⊆ S. We then define

I = {B ⊆ S : |B| ≤ |A|, A 6= B}. Indicate whether or not (S, I) is a matroid. If it is a matroid, show that it

satisfies all the necessary conditions for being one. Otherwise, give a counter-example and indicate which condition

is not satisfied.

Question 3c Consider a graph G = (V,E) and let S := V . Define I := {A ⊆ S : A is the set of vertices covered

by some matching of G}. Indicate whether or not (S, I) is a matroid. If it is a matroid, show that it satisfies

all the necessary conditions for being one. Otherwise, give a counter-example and indicate which condition is not

satisfied.

Question 4 For each statement, indicate if the statement is true or false. No justification necessary for this

question. In all cases, P and Q are two problems in NP.

1. If both P and Q are NP-complete, then there is a polynomial reduction from P to Q and there is a polynomial

reduction from Q to P .
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2. If there exist a polynomial reduction from P to Q and a polynomial reduction from Q to P , then we know that

both P and Q are NP-complete.

3. if P is NP-complete and there exits a polynomial reduction from Q to P , then Q is NP-complete.

4. if P is in P and there exits a polynomial reduction from Q to P , then Q is in P.

5. if P is both in P and in NP, then P = NP.

Question 5 Solve the following problem using the branch-and-bound method.

max 2x1 + x2 + 4x3 + 4x4 + 6x5

s.t. 7x1 + 21x2 + 28x3 + 19x4 + 17x5 ≤ 65

x ∈ {0, 1}5

Hint: The LP relaxation can be solved by sorting the variables according to the ratios cj/aj .

Question 6a Consider the following 0-1 knapsack set: K := {x ∈ {0, 1}5 : 5x1+2x2+3x3+3x4+4x5 ≤ 9}. Find

a cover inequality that separates the fractional point (1, 1, 13 ,
1
3 , 0). Then, use the lifting procedure to strengthen

all the cut coefficients that are initially zero.

Question 6b Consider the following 0-1 knapsack set: K := {x ∈ {0, 1}5 : 4x1 + 4x2 + 3x3 + 2x4 + 2x5 ≤ 10}.
Find a cover inequality that separates the fractional point x̃ =

(
3
4 ,

1
2 ,

1
6 , 1, 1

)
. Then, use the lifting procedure to

strengthen all the cut coefficients that are initially zero.

Question 7 Find an optimal solution for the following cutting-stock problem. We have a supply of stocks of

length 14. We want 20 pieces of length 3 and 18 pieces of length 5. Arrange the cuts so as to satisfy the demand

while minimizing the number of stocks used.

Question 8a Consider the matching problem:

Given a connected graph G = (V,E), find a subset of the edges F ⊆ E of maximum cardinality, such

that no two edges in F are adjacent.

Design a 2-approximation algorithm for the matching problem, and prove that it is indeed a 2-approximation

algorithm.

Hint: Use a greedy algorithm.

Question 8b Design a 2-approximation algorithm for weighted vertex cover, and prove that it is indeed a

2-approximation algorithm.

Hint: Use the LP relaxation of an IP formulation for vertex cover.

Remark: You can use without proof any result seen in class, except the proof that the algorithm is a 2-

approximation, which you should reproduce here.
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