
Column generation

Let a linear programming (LP) problem be

min cTx

s.t. Ax = b

x ∈ Rn
+.

Column generation (also called delayed column generation), is a general approach for solving LP problems that

have too many columns to consider them all (i.e., n� m). It procceeds as follows:

Step 1. Consider an LP having only a subset of the columns. This is a restriction of the original LP since we

are implicitly fixing all the variables associated to the missing columns to zero (and nonbasic). Optimize over this

restricted LP.

Step 2. Consider an optimal basis of the restricted LP. For that basis, in the original LP, find a column that is

currently not in the restricted LP, but has a negative reduced cost: find j such that cj − cBB−1Aj < 0 where Aj is

the jth column of the original problem. In general, this would require enumerating all the columns of the original

LP. However, it is often possible to express “finding the minimum reduced cost” as an optimization problem (called

the pricing problem). If there exists a column with a negative reduced cost, add it to the restricted LP, and repeat.

Otherwise, the current basis is optimal for the original LP, and we are done.

In order to perform column generation without enumerating all columns, one needs to express a pricing problem

that finds the relevant columns. This pricing problem will depend on the original LP problem. Here, we give an

example where the original LP is a formulation for the cutting-stock problem.

1 The cutting-stock problem

Problem statement. We are given an infinite supply of stocks of a fixed size (stocks is a generic term that

can represent any material, say, steel beams, or fabric sheets). We want to cut them ino a given number of pieces

of given sizes. Arrange the cuts so as to minimize the number of stocks required.

input: 17 ∞×
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

output: 3 25×

5 20×

9 15×

Notation for data.

ai is the length for pieces of type i, for i = 1, 2, . . . ,m,

di is the demand for pieces of type i, for i = 1, 2, . . . ,m,

b is the length of a stock.

1

In our example, b = 17, a = [3 5 9]T and d = [25 20 15]T .

Variables. A pattern is an arrangement of pieces that can be cut from a single stock. In our example, we

can cut, from a single stock, 2 pieces of size 3, 2 pieces of size 5, and 0 piece of size 9. This gives us the pattern

[2 2 0]T . Now, consider all possible patterns; we number them p = 1, 2, . . . and denote them

Qp =


q1p
...

qmp


where pattern p contains qip pieces of type i, for i = 1, . . . ,m. Remark that for all p, the pattern Qp will satisfy

n∑
i=1

qipai ≤ b.

Our variables will be xp the number of times we select pattern p, for all p.

Formulation.
min

∑
p

xp

s.t.
∑
p

Qpxp ≥ d for all p

xp ≥ 0 for all p

xp ∈ Z for all p

In the example, some patterns are

Q1 = [5 0 0]T

Q2 = [0 3 0]T

Q3 = [0 0 1]T

Q4 = [2 2 0]T

...

and the formulation becomes:

min x1 + x2 + x3 + x4 + · · ·

s.t.

 5

0

0

x1 +

 0

3

0

x2 +

 0

0

1

x3 +

 2

2

0

x4 + · · · ≥

 25

20

15


xp ≥ 0 for all p

xp ∈ Z for all p

(LP)

which we can solve by branch-and-bound.

Column generation for the cutting-stock problem. In many cases, there are too many distinct patterns

to enumerate them all, even just to solve the LP relaxation. Therefore, we apply column generation: we start with

2

a small subset of the possible patterns. Typically, we first use the simplest patterns, those that use only pieces of

a single type. In our example with b = 17 and a = [3 5 9]T , those are

Q1 = [5 0 0]T

Q2 = [0 3 0]T

Q3 = [0 0 1]T

which give us the restricted LP relaxation

min x1 + x2 + x3

s.t.

 5

0

0

x1 +

 0

3

0

x2 +

 0

0

1

x3 ≥

 25

20

15


x ∈ R3

+.

(R1)

We can add “slack” variables to obtain equality constraints:

min x1 + x2 + x3

s.t.

 5

0

0

x1 +

 0

3

0

x2 +

 0

0

1

x3 +

 −1

0

0

 s1 +

 0

−1

0

 s2 +

 0

0

−1

 s3 =

 25

20

15


x ∈ R3

+

s ∈ R3
+

and solve the above with the simplex method. We get an optimal primal solution x∗ = [5 20
3 15]T , and an optimal

dual solution y∗ = [15
1
3 1]T . Recall that y∗ = cBB

−1 where B is the set of basic columns in the optimal basis,

and B is the corresponding basis matrix. Now, x∗ is feasible for both (R1) and (LP), and it is optimal for (R1),

but is it also optimal for (LP)? In order to answer this question, we need to compute the reduced costs associated

to the basis B in (LP). They are given by c̄ = c − cBB−1A = c − y∗TA, where A is the matrix of the constraint

coefficients, i.e., A = [Q1 Q2 · · · − I]. We thus have c̄p = cp − y∗TQp = 1− y∗Qp for all p. If c̄p ≥ 0 for every

pattern p (including those not considered so far), then B is optimal not only for (R1) but also for (LP), and x∗ is

an optimal solution to (LP). Otherwise, if c̄p < 0 for some p, then the column Qp must be added to (R1) in order

for it to enter the basis.

Note that answering “∃p : c̄p < 0?” is equivalent to answering “minp c̄p < 0?”. The latter asks whether there

exist a pattern Qp that minimizes c̄p = 1− y∗TQp. This can be formulated as an optimization problem where the

variables q1, . . . , qm will be the elements of Qp, i.e., the number of pieces of each type that we take in the pattern:

min 1 −
m∑
i=1

y∗i qi

s.t.

m∑
i=1

aiqi ≤ b

q ∈ Zm
+

= 1− max

m∑
i=1

y∗i qi

s.t.

m∑
i=1

aiqi ≤ b

q ∈ Zm
+ .

This is the pricing problem for our cutting-stock formulation. Observe that it is an integer knapsack. Going back

3

to the example, we get

1− max 1
5q1 + 1

3q2 + 1q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+

= 1− 1

15
max 3q1 + 5q2 + 15q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+.

= 1− 1

15
[3 5 15] [1 1 1]T

= 1− 23

15
= − 8

15

where the optimal solution [1 1 1]T to the knapsack problem was found by dynamic programming. So the column

[1 1 1]T has a negative reduced cost − 8
15 , and we add it to our restricted formulation, yielding

min x1 + x2 + x3 + x4

s.t.

 5

0

0

x1 +

 0

3

0

x2 +

 0

0

1

x3 +

 1

1

1

x4 ≥

 25

20

15


x ∈ R4

+.

(R2)

Applying the simplex method on (R2), we get an optimal primal solution x∗ = [2 5
3 0 15]T , and an optimal dual

solution y∗ = [15
1
3

7
15]T . The pricing problem is now

1− max 1
5q1 + 1

3q2 + 7
15q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+

= 1− 1

15
max 3q1 + 5q2 + 7q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+.

= 1− 1

15
[3 5 7] [4 1 0]T

= 1− 17

15
= − 2

15

where the optimal solution [4 1 0]T to the knapsack problem was found, again, by dynamic programming. So

we still have a negative reduced cost − 2
15 for the column [4 1 0]T . We add that column, too, to our restricted

formulation:

min x1 + x2 + x3 + x4 + x5

s.t.

 5

0

0

x1 +

 0

3

0

x2 +

 0

0

1

x3 +

 1

1

1

x4 +

 4

1

0

x5 ≥

 25

20

15


x ∈ R5

+.

(R3)

4

Applying the simplex method on (R3), we get an optimal primal solution x∗ = [0 5
6 0 15 5

2]T , and an optimal

dual solution y∗ = [16
1
3

1
2]T . The pricing problem is now

1− max 1
6q1 + 1

3q2 + 1
2q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+

= 1− 1

6
max 1q1 + 2q2 + 3q3

s.t. 3q1 + 5q2 + 9q3 ≤ 17

q ∈ Z3
+.

= 1− 1

6
[1 2 3] [4 1 0]T

= 1− 6

6
= 0

where the optimal solution [4 1 0]T to the knapsack problem was found, again, by dynamic programming. This

time, since minp c̄p ≥ 0, we now that c̄p ≥ 0 for all the reduced costs of (LP). Therefore, x∗ = [0 5
6 0 15 5

2]T is

an optimal solution not only to (R3), but also to (LP). It has an objective function value of 55
3 ≈ 18.33. We now

have a solution to the LP relaxation of our formulation, and can proceed to perform branch-and-bound. However,

it is not necessary in our particular example, as we will demonstrate.

Observation 1. Given an IP formulation in minimization form, if zLP is the optimal objective function value

of the LP relaxation, then any integer solution will have cost zIP ≥ zLP . In a cutting-stock problem, the objective

function only has integer coefficients, so zIP ∈ Z, and we can write zIP ≥ dzLP e. In our example, this means that

zIP ≥ d 553 e = 19.

Observation 2. In a cutting-stock problem, all constraints are of the form “≥” and Aij ≥ 0 for all i, j.

Therefore, any solution x′ such that x′ ≥ x∗ is LP-feasible. In particular x′ := dx∗e is LP-feasible and integral, so

it is IP-feasible. In the example, x′ = [0 1 0 15 3]T has objective function value 19, so it is optimal. Having

found this integer solution x′ and having proven that it is optimal, there is no need to perform branch-and-bound.

Our optimal solution corresponds to taking x∗2 = 1 times the pattern Q2 = [0 3 0]T , x∗4 = 15 times the pattern

Q4 = [1 1 1]T , and x∗5 = 3 times the pattern Q5 = [4 1 0]T :

1× 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 015× 3 5 9

3× 3 3 3 3 5

giving:

27 pieces of length 3,

21 pieces of length 5,

15 pieces of length 9,

and some waste (length 2), using a total of 19 stocks.

5

2 Second example

We now consider a second, smaller example, that lets us solve all LPs and knapsacks by hand. The data are given

by:

input: b = 11

0 0 0 0 0 0 0 0 0 0 00
output: a1 = 3 d1 = 18

a2 = 4 d2 = 16

Iteration 1: LP. We start with the two simple patterns [3 0]T and [0 2]T .

min x1 + x2

s.t.

[
3

0

]
x1 +

[
0

2

]
x2 ≥

[
18

16

]
x ∈ R2

+

The only way to satisfy the first constraint is to have 3x1 ≥ 18. Similarly, for the second, we need 2x2 ≥ 16. We

thus immediately know the optimal solution x∗ = [6 8]T . However, we still need a corresponding dual solution, so

we write down our initial problem algebraically

c =
[

1 1 0 0
]

A =

[
3 0 −1 0

0 2 0 −1

]
b =

[
18

16

]
and set our basis to B = {1, 2}. We get a basis matrix B compute its inverse:

B =

[
3 0

0 2

]
B−1 =

[
1/3 0

0 1/2

]

Because we will need it later, we write the tableau corresponding to B:

c̄ =
[

0 0 1/3 1/2
]

Ā =

[
1 0 −1/3 0

0 1 0 −1/2

]
b̄ =

[
6

8

]
Observe that the first two columns of Ā are an identity because x1 and x2 are basic. Furthermore, the two

subsequent columns are B−1(−I) = −B−1. We can compute c̄ after Ā, so that we can use c̄j = cj− [1 1]Ā. Again,

c̄0 and c̄1 are zero because x1 and x2 are basic. Finally, we compute the dual solution

y∗T = cBB
−1 =

[
1 1

] [1/3 0

0 1/2

]
=
[

1/3 1/2
]
.

6

Iteration 1: pricing. The pricing problem looks for c̄p = cp− y∗Qp < 0. It corresponds to the knapsack given

below:

min
p
c̄p = min 1 − 1

3q1 − 1
2q2

s.t. 3q1 + 9q2 ≤ 11

q ∈ Z2
+

= 1− 1

6
max 2q1 + 3q2

s.t. 3q1 + 9q2 ≤ 11

q ∈ Z2
+

r = 1 r = 2

λ = 0 0 0

1 0 0

2 0 0

3 2 2

4 2 3

5 2 3

6 4 4

7 4 5

8 4 6

9 6 6

10 6 7

11 6 8

We find minp c̄p = 1− 1
68 = − 1

3 , with a pattern q∗ = [1 2]T .

Iteration 2: LP. Once we add the pattern [1 2]T , we get the restricted LP

min x1 + x2 + x3

s.t.

[
3

0

]
x1 +

[
0

2

]
x2 +

[
1

2

]
x3 ≥

[
18

16

]
x ∈ R3

+

which corresponds to adding a column to the algebraic representation

c =
[

1 1 1 0 0
]

A =

[
3 0 1 −1 0

0 2 2 0 −1

]
b =

[
18

16

]
If we reuse the basis B = {1, 2} that was optimal at iteration 1, we immediately get the tableau

c̄ =
[

0 0 −1/3 1/3 1/2
]

7

Ā =

[
1 0 −1/3 0

0 1 0 −1/2

]
b̄ =

[
6

8

]
where c̄3 = − 1

3 is given by the dynamic programming algorithm at the end of iteration 1, and Ā3 = B−1Q3 =

B−1

[
1

2

]
. Clearly, x3 should enter the basis. Applying one pivot of the primal simplex method, x2 leaves the

basis, yielding B = {1, 3} and

B =

[
3 0

1 2

]
B−1 =

[
1/3 −1/6

0 1/2

]
.

The corresponding tableau is computed as for the first iteration:

c̄ =
[

0 1/3 0 1/3 1/3
]

Ā =

[
1 −1/3 0 −1/3 −1/6

0 1 1 0 −1/2

]
b̄ =

[
10/3

8

]
and we now have an optimal solution (because c̄ ≥ 0) to the restricted LP

x∗ =
[

10
3 0 8

]T
with objective function value 34

2 ≈ 11.33. We also have a dual solution

y∗T = cBB
−1 =

[
1 1

] [1/3 −1/6

0 1/2

]
=
[

1/3 1/3
]
.

Iteration 2: pricing. The pricing problem is the same as previously, only with a new value of y∗:

min
p
c̄p = min 1 − 1

3q1 − 1
3q2

s.t. 3q1 + 9q2 ≤ 11

q ∈ Z2
+

= 1− 1

3
max q1 + q2

s.t. 3q1 + 9q2 ≤ 11

q ∈ Z2
+

8

r = 1 r = 2

λ = 0 0 0

1 0 0

2 0 0

3 1 1

4 1 1

5 1 1

6 2 2

7 2 2

8 2 2

9 3 3

10 3 3

11 3 3

We find minp c̄p = 1 − 1
33 = − 1

3 , with q∗ = [3 0]T . We conclude that c̄p ≥ 0 for all patterns, including those not

in the restricted LP. Our solution x∗ =
[

10
3 0 8

]T
is thus optimal for the original LP (the one that considers

all possible patterns).

Integer solution Because the objective function value of x∗ is 34
2 ≈ 11.33, any integer solution will have objective

function value 12 or more. We construct

x′ = dx∗e =

⌈[
10
3 0 8

]T⌉
=
[

4 0 8
]T

It is IP-feasible and has objective function value 12 so it is optimal.

Our optimal solution corresponds to taking x∗1 = 4 times the pattern Q1 = [3 0]T , x∗3 = 8 times the pattern

Q3 = [1 2]T :

4× 3 3 3

0 0 0 0 0 0 0 0 0 0 08× 3 4 4

giving:

20 pieces of length 3,

16 pieces of length 4,

and some waste (length 2), using a total of 12 stocks.

9

	The cutting-stock problem
	Second example

