
CO 353 Winter 2018: Project 1

Due: February 5 at 8pm

1 Objective

The project consists in implementing both Prim’s algorithm and Kruskal’s algorithm for the minimum spanning

tree problem. The implementation must be correct and efficient. In particular, given a graph with n nodes and m

edges,

• the implementation of Prim’s algorithm must have O(n2) complexity, and

• the implementation of Kruskal’s algorithm must be O(m logm), even in the special case where m = O(n)

instead of O(n2).

The above complexity bounds are in the arithmetic model, i.e. addition, subtraction, multiplication, division

comparison and assignment are O(1).

This project can be completed in groups of 1 or 2. You can also form groups of 3, but only if you first get my

approval by email (lpoirrier (at uwaterloo)) by January 21st.

2 Input and output

The input is a connected graph G = (V,E) with node-set V (with n = |V |) and edge-set E (with m = |E|). Positive

integer edge costs ce ∈ Z are given for each edge e ∈ E. An upper bound cmax is also given on the edge costs: for

all e ∈ E, we have 1 ≤ ce ≤ cmax. The graph is given in a file containing 1 + m lines. The first line is of the form:

n m cmax

and is followed by m lines of the form:

u v cuv

indicating an edge from node u to node v with cost cuv. Note that both u and v describe the corresponding node

by its index between 0 and n− 1, i.e. u, v ∈ {0, 1, . . . , n− 1}.

A complete example is given by

4 5 200

0 1 187

0 2 136

0 3 50

1 2 163

2 3 194
12

3 0

187136

50

163

194

where the first line indicates that there are n = 4 nodes, m = 5 edges, and edge costs ce are at most cmax = 200.

Then, the subsequent 5 lines give the 5 edges of the graph by specifying the adjacent nodes, and the corresponding

edge costs. On the figure, the nodes are given by their indices.

1

The output must be a minimum spanning tree given in a file consisting of n − 1 lines. Each line is of the form:

u v

In our example, a correct solution file could be:

0 3

0 2

1 2

12

3 0

187136

50

163

194

Note that, in order to (optionally) let you include more information in the output file, everything between a # sign

and the end of a line will be ignored. So, for example, the following is also correct:

n = 4, m = 5, cmax = 200. MST cost 349.

0 3 # cost fifty

0 2 # cost 136

1 2 # some other comment

More example input and output files are given at https://www.math.uwaterloo.ca/~lpoirrie/co353.html.

3 Running the code

Your code must take exactly two arguments. The first argument is the name of a file containing the input graph.

The second argument is the name of a file where the output tree is to be written.

You have a choice between the following languages for the implementation: C, C++ or Python.

3.1 In C or C++

Your code must be portable to any environment with a standards-conforming C or C++ compiler. It must be

possible to compile and run it by using the following commands:

in C: in C++:

gcc -O3 -o prim prim.c

./prim input graph.txt output tree1.txt

gcc -O3 -o kruskal kruskal.c

./kruskal input graph.txt output tree2.txt

g++ -O3 -o prim prim.cpp

./prim input graph.txt output tree1.txt

g++ -O3 -o kruskal kruskal.cpp

./kruskal input graph.txt output tree2.txt

In other words, you must implement your code for Prim’s algorithm in a file called prim.c (prim.cpp in C++),

and your code for Kruskal’s algorithm in a file called kruskal.c (kruskal.cpp in C++).

Note: Optionally, you may provide a Makefile, in which case your code will be compiled by running make. If you

choose to do this, it is your responsibility to ensure that the Makefile is correct, so do it only if you are familiar

with Makefiles already.

2

https://www.math.uwaterloo.ca/~lpoirrie/co353.html

3.2 In Python

It must be possible to run your code by executing the following commands:

python prim.py input graph.txt output tree1.txt

python kruskal.py input graph.txt output tree2.txt

In other words, you must implement your code for Prim’s algorithm in a file called prim.py, and your code for

Kruskal’s algorithm in a file called kruskal.py.

4 Submitting the project

You submit your implementation by sending a single email to both lpoirrier (at uwaterloo) and wjtoth (at

uwaterloo), by 8pm on Monday, February 5th, 2018. Late submissions will not be accepted. The subject line of

your email must contain the string CO353. Your email must contain a single attachment file: an archive in the

format .zip or .tgz. The name of the archive is formed by the UWaterloo IDs of your group members, in any

order, separated by underscores. For example: jwtoth lpoirrie.tgz. The archive contains (at least) three files:

• the source file for your implementation of Prim’s algorithm,

• the source file for your implementation of Kruskal’s algorithm, and

• a file called notes.txt (or notes.md if you prefer), see below.

The file notes.txt mentions the names of the (1, 2 or 3) members of your group. It also mentions the algorithmic

complexity of the two implementations, and contains a short explanation of the algorithms and data structures

that you used to achieve this complexity. The file should be between 10 and 50 lines long, approximately.

5 Contribution

You may use the standard library in the language you chose. No other library is allowed. In case of doubt ask me.

You can consult any source of information you want (books, internet, scientific papers, etc.), but copying code is

not allowed, regardless of the source. Every single line of your code must be written by a member of the group.

Each member of the group must understand (and must be able to justify) every line of the code, including the ones

they did not write. After the due date, I may call an individual group member to come to my office hours; if that

member does not show sufficient understanding of the code, all group members will get zero.

6 Grading criteria

The projects will be graded on a total of 10 marks, divided in 4 categories. Pay attention to the first two: if your

code does not follow the specification or is incorrect, it will not be tested for speed, and you will get zero for the

3

fourth category (efficiency).

• Specification (1 mark). Your submission must follow the specifications given in this document (your email

must have the correct recipients/subject/attachment, your source files must follow the template given above,

your code must compile and take the right arguments). The rules are rigid because testing will be automated.

• Correctness (2 marks). The output must describe a minimum spanning tree.

• Code quality (2 marks). It should be reasonably easy to understand your code. Comments can be used to

help in that regard, but with moderation. The code itself must be clear and readable.

• Efficiency (5 marks). Your code must have the prescribed complexity (O(n2) for Prim, O(m logm) for

Kruskal). It is your responsibility to understand the computational complexity of the functions and data

structures that you use, even if they are part of the core language. For example, if you use an array of

elements, removing an element in the middle is O(n), even if it appears to be a single operation. This can

be done in O(1) with a linked list.

Note: if your code is so fast that reading the input becomes the bottleneck, we will measure the time taken

specifically by the Prim/Kruskal parts of your code.

4

	Objective
	Input and output
	Running the code
	In C or C++
	In Python

	Submitting the project
	Contribution
	Grading criteria

