
CO 353 Winter 2018: Project 3

Due: March 19 at 8pm

1 Objective

The project consists in implementing the dual simplex method for linear programming with general lower and

upper bounds. The implementation must be correct and robust to the numerical inaccuracies of floating-point

arithmetic. In particular, given c ∈ Rn, ` ∈ Rn, u ∈ Rn, b ∈ Rm and A ∈ Rm×n, a linear programming problem is

formulated as
min cTx

s.t. Ax = b

` ≤ x ≤ u

x ∈ Rn.

If the problem is feasible, the implementation must find a basic solution that is (a) feasible within the tolerance ε,

i.e., `B−ε ≤ x∗
B ≤ uB +ε where x∗

B are the values of the basic variables, and (b) optimal within the same tolerance

ε. Letting c̄ be the reduced costs corresponding to the basic solution, (b) means that c̄j ≥ −ε if xj is at lower

bound, and c̄j ≤ ε if xj is at upper bound. We will use ε = 10−6. Note that your code must implement the dual

simplex method, so, for example, enumerating all the possible bases is not considered a correct implementation (it

would be exceedingly slow).

This project can be completed in groups of 1 or 2. You can also form groups of 3, but only if you first get my

approval by email (lpoirrier (at uwaterloo)) by March 5th. If you already had approval for a group of 3 for a

previous assignment, then you are automatically allowed (but not required) to form the same group of 3 for this

assignment (no need to contact me in this case).

2 Input and output

The input consists in m ∈ Z+, n ∈ Z+, c ∈ Rn, ` ∈ Rn, u ∈ Rn, b ∈ Rm and A ∈ Rm×n. They are given in a file of

the form:
m n

c0 c1 c2 . . . cn−1

`0 `1 `2 . . . `n−1

u0 u1 u2 . . . un−1

a0,0 a0,1 a0,2 . . . a0,n−1

a1,0 a1,1 a1,2 . . . a1,n−1

...

am−1,0 am−1,1 am−1,2 . . . am−1,n−1

b0 b1 . . . bm−1

All the numbers given in input will have an absolute value smaller than 109, and `j ≤ uj for all j = 0, 1, . . . , n− 1.

1



The output file contains two lines (aside from optional comment and empty lines that are ignored, see below). The

first line is either the word infeasible if the problem is infeasible, or the word optimal if the problem is feasible.

The second line contains n+m numbers that can be −1, 0, or 1. Each of these numbers describes the status of the

corresponding column in the final tableau: −1 means at lower bound, 1 means at upper bound, and 0 means basic.

If the problem is feasible, then this tableau must be optimal. Otherwise, it is the tableau that is in use when the

ratio test detects infeasibility.

Note that there are n+m columns and not just n: indices n, . . . , n+m− 1 correspond to artificial variables

fixed to zero that are used to create a starting basis. They are the z variables in the equivalent problem

min cTx + 0T z

s.t. Ax + Iz = b

` ≤ x ≤ u

0 ≤ z ≤ 0

x ∈ Rn, z ∈ Rm.

In order to (optionally) let you include more information in the output file, everything between a # sign and the

end of a line will be ignored. Empty lines are also allowed and ignored.

Example input and output files are given at https://www.math.uwaterloo.ca/~lpoirrie/co353.html.

3 Running the code

Your code must take exactly two arguments. The first argument is the name of a file containing the input linear

programming instance. The second argument is the name of a file where the output is to be written.

You have a choice between the following languages for the implementation: C, C++ or Python.

3.1 In C or C++

Your code must be portable to any environment with a standards-conforming C or C++ compiler. It must be

possible to compile and run it by using the following commands:

in C: in C++:

gcc -O3 -o dsm dsm.c

./dsm input.txt output.txt

g++ -O3 -o dsm dsm.cpp

./dsm input.txt output.txt

In other words, you must implement your code in a file called dsm.c (in C) or dsm.cpp (in C++). DSM stands for

Dual Simplex Method.

Note: Optionally, you may provide a Makefile, in which case your code will be compiled by running make. The

resulting executable must be named dsm. If you choose to do this, it is your responsibility to ensure that the

Makefile is correct, so do it only if you are familiar with Makefiles already.

2

https://www.math.uwaterloo.ca/~lpoirrie/co353.html


3.2 In Python

It must be possible to run your code by executing the following command:

python dsm.py input.txt output.txt

In other words, you must provide a source file called dsm.py (if you want, dsm.py can import code from other

files). DSM stands for Dual Simplex Method. If you need a specific version of the Python language, include the

string ”python2” or ”python3” somewhere in dsm.py, for example in a comment.

4 Submitting the project

You submit your implementation by sending a single email to both lpoirrier (at uwaterloo) and wjtoth (at

uwaterloo), by 8pm on Monday, March 19th, 2018. Late submissions will not be accepted. The subject line of

your email must contain the string CO353. Your email must contain a single attachment file: an archive in the

format .zip or .tgz. The name of the archive is formed by the UWaterloo IDs of your group members, in any

order, separated by underscores. For example: jwtoth lpoirrie.tgz. The archive contains (at least) two files:

• a source file for your implementation, and

• a file called notes.txt (or notes.md if you prefer).

The file notes.txt only specifies the names of the (1, 2 or 3) members of your group. No further explanations are

required for this assignment (although you are allowed to put explanations there if you wish to highlight something

you did particularly well in your code).

5 Contribution

You can use the standard library in your language of choice. In addition, you are allowed (and strongly

advised) to use an external library that handles linear algebra, in particular matrix operations. For C++

you can use Eigen, for Python you can use NumPy. Do not include these libraries in the archive that you send by

email: you can assume that they are installed and available (for example, #include "Eigen/Dense", #include

<Eigen/Dense>, import numpy and from numpy import * will all work in their respective languages). If you

prefer, you can choose another library for linear algebra (i.e. not Eigen or Numpy), but only if you first get my

approval by email by March 5th (in particular, libraries that feature an implementation of the simplex method will

not be allowed).

Aside from that, no other library is allowed. In case of doubt ask me. You can consult any source of information

you want (books, internet, scientific papers, etc.), but copying code is not allowed, regardless of the source. Every

single line of your code must be written by a member of the group. Each member of the group must understand

(and must be able to justify) every line of the code, including the ones they did not write. After the due date, I may

3

http://eigen.tuxfamily.org/
http://www.numpy.org/


call an individual group member to come to my office hours; if that member does not show sufficient understanding

of the code, all group members will get zero.

6 Grading criteria

The project will be graded on a total of 15 marks, divided in 5 categories. Pay attention to the first one: if your

code does not follow the specification, it will not be tested, and you will get zero for all the rest.

• Specification (1 mark). Your submission must follow the specifications given in this document (your email

must have the correct recipients/subject/attachment, your source files must follow the template given above,

your code must compile and take the right arguments). The rules are rigid because testing will be automated.

• Code quality (2 marks). It should be reasonably easy to understand your code. Comments can be used to

help in that regard, but with moderation. The code itself must be clear and readable.

• Correctness (4 marks). Your code must be an implementation of the dual simplex method with general lower

and upper bounds. When the LP instance given in input is feasible, the output must describe an optimal

solution. When the LP instance is infeasible, this must be correctly identified.

• Robustness (4 marks). Your code must be able to deal with numerical issues arising in larger instances (i.e.,

floating-point inaccuracies). All floating-point operations must take those issues into account, and handle

them properly.

• Efficiency (4 marks). Your code must not be more than 100× slower than a reference implementation in the

same language.

4


	Objective
	Input and output
	Running the code
	In C or C++
	In Python

	Submitting the project
	Contribution
	Grading criteria

