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Exam details:

Course: CO 353 – Computational discrete optimization

Instructor: Laurent Poirrier

Date and time of exam: February 16, 2018 – 11:30 AM to 12:20 PM

Duration of exam: 50 minutes

Number of exam pages: 4 (includes this cover page)

Exam type: Closed book – no additional material allowed

Instructions:

Your answers must be stated and justified in a clear and logical form, and you must show all of your steps in order

to receive full marks. You may use any result from class without proof, unless you are being asked to prove this

result. You will be graded not only on correctness, but also on clarity of exposition. No collaboration is allowed.

Question 1

a. [2 marks] Consider the following problems. For each of them, give the encoding size, in big-O notation. No

justification is necessary for this subquestion.

1. Given a, b ∈ Z+, compute

ab (P1)

Solution:

O(log a+ log b)

2. Given a ∈ Z2
+, b ∈ Z+, c ∈ Z2

+, u ∈ Z2
+, compute

max c1x1 + c2x2

s.t. a1x1 + a2x2 = b

0 ≤ x1 ≤ u
0 ≤ x2 ≤ u
x1, x2 ∈ Z,

(P2)

Solution:

O(log(c1) + log(c2) + log(a1) + log(a2) + log(b) + log(u1) + log(u2)
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b. [2 marks] Consider the following algorithms. For each of them, give its computational complexity, in big-O

notation, in the arithmetic model. No justification is necessary for this subquestion.

1. Given a, b ∈ Z+, z := 1

while b > 0

| if b is odd

| | z := az

| | b := b− 1

| b := b/2

| a := a2

return z

(A1)

Solution:

O(log(b))

2. Given a ∈ Z2
+, b ∈ Z+, c ∈ Z2

+, u ∈ Z2
+,

z := −1

for x1 = 0, 1, . . . , u1

| for x2 = 0, 1, . . . , u2

| | if a1x1 + a2x2 = b

| | | w := c1x1 + c2x2

| | | if w > z

| | | | z := w

return z

(A2)

Solution:

O(u1 · u2)

c. [1 mark] Let L be the encoding size of problem (P2) above, and assume that (A2) above is an algorithm that

solves (P2). Consider the complexity of (A2) in the arithmetic model. Is it polynomial in L? If yes, give the

polynomial in L, in big-O notation. If not, explain why it is not polynomial in L.

Solution:

We have L = O(log(c1)+log(c2)+log(a1)+log(a2)+log(b)+log(u1)+log(u2). The complexity is C = O(u1 ·u2),

and it is not polynomial in L because L only has terms in log(u1) and log(u2): there exist no polynomial in L

that can express u1 or u2 (instead, we could express for example u1 as an exponential in L: u1 = O(2L)).

Question 2 [3 marks] Prove that the statement below is false by giving a counter-example. Draw a counter-

example graph G, a subgraph H (use colors or symbols or dashed lines to differentiate G and H in your drawing),

and state why the statement is false in the counter-example.

Wrong Theorem: LetG(V,E) be a connected graph andH(W,F ) be a subgraph ofG. If |F | = |V |−1

then H is a spanning tree of G.
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Solution:

Consider the following graph G(V,E) (continuous and dashed edges) and its subgraph H(W,F ) (continuous edges

only). The subgraph H has 3 edges, which is indeed |V | − 1, and yet it is not spanning. Note that any subgraph

H with a circuit could be a counter-example.

Question 3 [6 marks] Consider the graph G(V,E) illustrated below (continuous and dashed edges: V =

{a, b, c, . . . , j, k}, E = {ab, ac, ad, bf, ce, cg, df, eh, fi, fj, gj, hk, ik, jk}), and its subgraph H(W,F ) (continuous

edges only: W = {a, b, c, d, e}, F = {ab, ad, ce}). The edge costs ce > 0 are given for some edges (cfi = 3, cfj =

4, cgj = 2, chk = 4, cik = 2, cjk = 5), but are unknown for the others. Assuming that H can be extended to a mini-

mum spanning tree of G (i.e., H is a subgraph of a minimum spanning tree of G), prove that H ′(W∪{f, i}, F∪{fi})
can also be extended to a minimum spanning tree of G. You can use without proof any result seen in class.

a

b

c

d

e

f

g

h

i

j

k

4

5

23

4
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Solution:

We use the following lemma seen in class: Let H be a subgraph of G that can be extended to an MST. Let D be

a cut in G such that H ∩D = ∅. Let e be a minimum-cost edge in D. Then, H ∪ {e} can be extended to an MST.

In this case, consider the cut D = δ({i, k}) = {hk, fi, jk}. The costs of all edges in D are known (4, 3, and 5,

respectively), and fi’s cost is minimum (3). Hence, the lemma applies and H ′ can also be extended to an MST.

Question 4 [6 marks] Given, a ∈ Zn
+ and b ∈ Z+, consider the constraints of a 0-1 knapsack:

∑n
j=1 ajxj ≤ b

xj ∈ {0, 1}, ∀j = 1, 2, . . . , n.
(K)

Let S := {1, 2, . . . n} and I := {J ⊆ S :
∑

j∈J aj ≤ b}. Note that I corresponds to the set of all feasible solutions

to (K), where j ∈ J if we take the jth object in the knapsack. Is (S, I) a matroid? If yes, prove that it satisfies

the conditions for being a matroid. If not, give an example (S, I) instance and show that it does not satisfy one of

these conditions.

Solution:
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(S, I) is not a matroid. Consider the 0-1 knapsack

x1, x2, x3 ∈ {0, 1} : x1 + x2 + 2x3 ≤ 2,

with ground set S = {1, 2, 3}. Then, let A = S = {1, 2, 3}. Clearly, {1, 2} is a basis of A (1 + 1 + 0 ≤ 2 but

1 + 1 + 2 6≤ 2), and {3} is another one (0 + 0 + 2 ≤ 2 but 0 + 1 + 2 6≤ 2 and 1 + 0 + 2 6≤ 2). We can observe that

|{1, 2}| = 2 6= |{3}| = 1, so not all bases of A have the same cardinality. Therefore, (S, I) is not a matroid.

Question 5 [5 marks] Consider two problems H and Q, both in NP. For each statement below, state whether

it is true or false. No justification is necessary for this question.

1. If H is in P and there is a polynomial reduction from Q to H, then this implies that Q is in P.

Solution:

True.

2. If Q is in P and there is a polynomial reduction from Q to H, then this implies that H is in P.

Solution:

False. It only implies that Q is not much harder than H, but H could still be harder than Q.

3. If there is a polynomial reduction from H to Q then this implies that Q is NP-complete.

Solution:

False. By definition, Q is NP-complete if there is a polynomial reduction from all problems in NP to Q, not

just H. The statement would be true if H was known to be NP-complete.

4. If there is a polynomial reduction from Q to H then this implies that Q is NP-complete.

Solution:

False. Consider the two cases where the complexity of H can tell us something about Q. Either H ∈ P, then it

only implies that Q ∈ P. Or H is NP-complete, then there is always a reduction from Q to H, whether Q ∈ P
or not. In any case, nothing can be said about Q being NP-complete.

5. If (i) H is NP-complete and (ii) Q is in P and (iii) there is a polynomial reduction from Q to H, then it implies

that P = NP.

Solution:

False. If (i) and (ii) hold, then (iii) always also holds, whether or not P 6= NP. Statement would be true if (iii)

was from H to Q.
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