
CO 367 Fall 2018: Homework 1

Due: October 5th, 1:30pm at the start of the lecture

Instructions For every nontrivial step you perform, you must justify why the step is valid and what assumption

it exploits. In other words, you do not need to justify basic algebraic operations (rearranging or distributing

terms, multiplying both sides of an equation by a constant, etc.), but you do need to explain all steps that exploit

hypotheses and assumptions (positive semidefiniteness of a matrix, continuity or convexity of a function, taking a

limit that must exist, etc.).

Question 1 Let A ∈ Rn×n be a symmetric, positive semidefinite matrix, and let k be a positive integer.

a. [4 marks] Construct a matrix G ∈ Rn×n such that Gk = A for any given A and k. Prove that Gk = A.

b. [2 marks] Show that G is invertible if and only if A is invertible.

c. [2 marks] By giving an example, show that G is not necessarily unique in satisfying Gk = A.

Solution: a. Assume that the eigenvalues of A are λ1, . . . , λn ∈ R and that the corresponding eigenvectors are given

by x1, . . . , xn. Since A is symmetric, there exists an orthogonal matrix Q = [x1| · · · |xn] and a diagonal matrix

D = diag(λ1, . . . , λn) such that A = QDQT . We construct G := QD1/kQT where D1/k = diag(λ
1/k
1 , . . . , λ

1/k
n ).

This is possible because with real numbers, since A is positive semidefinite, λ1, . . . , λn ≥ 0. Then, Gn =

(QD1/kQT )(QD1/kQT ) · · · (QD1/kQT ). Since QTQ = I, we have Gn = QD1/k · · ·D1/kQT = QDQT = A.

Note: An alternative construction for a. uses A =
∑
i λix

T
i x. Similarily, we construct G =

∑
i λ

1/k
i xTi x.

b. Since G = QD1/kQT and Q is invertible, G is invertible if and only if D1/k is invertible. This happens if and

only if λi 6= 0 for all i, which is the case if and only if A is invertible.

c. For simplicity, we will use k = 2. Let us construct a positive semidefinite matrix A as follows. First, we

construct an orthogonal matrix Q =

[
3/5 4/5

−4/5 3/5

]
. The columns of Q will be eigenvectors of A. Then we choose

eigenvalues, say 100 and 25. We have A = QDQT =

[
52 −36

−36 73

]
and G = QD1/2QT =

[
34/5 −12/5

−12/5 41

]
.

We can then verify that not only GG = A, but also (−G)(−G) = A.

Question 2 [6 marks] Prove the following. Let f : Rn → R be a C2-smooth function over Rn, and let α ∈ R
be some constant. If (∇f(y) − ∇f(x))T (y − x) ≥ α||y − x||22 for all x, y ∈ Rn, then (∇2f(z) − αI) is positive

semidefinite for all z ∈ Rn.

Solution: Take any t ∈ R and w ∈ Rn. Using our hypothesis with y = x+ tw, we get that

(∇f(x+ tw)−∇f(x))T tw ≥ αt2||w||2.

Let g : Rn → R be given by the ith component of ∇f : Rn → Rn, i.e. g(x) = (∇f(x))i. Since f ∈ C2(Rn), we
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know that g ∈ C1(Rn). We can thus write, using Taylor’s 1st-order expansion, that

g(x+ tw) = g(x) + twT∇g(x) + φ(tw) = g(x) +∇g(x)T tw + φ(tw),

where limt→0
φ(tw)
t = 0. Writing the above equation for all i, we get

∇f(x+ tw) = ∇f(x) +∇2f(x)T tw + ψ(tw),

where ψ : Rn → Rn satisfies limt→0
ψ(tw)
t = 0. Coming back to our hypothesis, we get

(∇f(x) +∇2f(x)T tw + ψ(tw)−∇f(x))T tw ≥ αt2||w||2,

thus,

(∇2f(x)T tw)T tw + ψ(tw)T tw ≥ αt2||w||2.

Dividing by t2, using ||w||22 = wTw, we get

wT∇2f(x)w +
ψ(tw)T

t
w ≥ αwTw.

Taking the limit for t→ 0,

wT∇2f(x)w ≥ αwTw,

then,

wT∇2f(x)w − αwTw ≥ 0,

and finally

wT (∇2f(x)− αI)w ≥ 0.

Since this is still true for any x,w ∈ Rn, ∇2f(x)− αI is positive semidefinite, for all x ∈ Rn.

Alternative solution: Compute the Taylor expansion of f(x + h) at x and the Taylor expansion of f(x) at x + h.

We get

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇2f(x+ λh)h (1)

f(x) = f(x+ h)− hT∇f(x+ h) +
1

2
hT∇2f(x+ σh)h (2)

for some 0 ≤ λ, σ ≤ 1. Add (1) and (2) together. We get

1

2
hT (∇2f(x+ λh) +∇2f(x+ σh))h = hT (∇f(x+ h)−∇f(x))

≥ α||h||22

We can now set h = tw where t ≥ 0 and ||w||2 = 1, and proceed as in the other proof.

Question 3 Let f : Rn → R and g : R → R be two convex functions over their respective domains. Moreover,

assume that g is monotonically nondecreasing.
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a. [3 marks] Show that if we define h : Rn → R as

h(x) = g(f(x)),

then h is convex over Rn.

b. [3 marks] Let Q ∈ Rn×n be a symmetric, positive semidefinite matrix, and let β > 0 be a positive scalar.

Use a. to show that q : Rn → R defined by

q(x) = eβx
TQx

is convex over Rn. (If you use the fact that some function is convex, you must prove that fact.)

Solution: a. We need to show that g is convex, i.e., for all x, y ∈ Rn and for all 0 ≤ α ≤ 1,

h(αx+ (1− α)y) ≤ αh(x) + (1− α)h(y),

or, replacing h(x) by its expression,

g(f(αx+ (1− α)y)) ≤ αg(f(x)) + (1− α)g(f(y)).

Since g is nondecreasing, we have for all a, b ∈ R,

a ≤ b ⇒ g(a) ≤ g(b). (3)

Since f is convex, we have, for all x, y ∈ Rn and for all 0 ≤ α ≤ 1,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (4)

Using (4) as the left-hand side of the implication (3), we get

g(f(αx+ (1− α)y)) ≤ g(αf(x) + (1− α)f(y)). (5)

The convexity of g gives

g(αa+ (1− α)b) ≤ αg(a) + (1− α)g(b). (6)

Letting a := f(x) and b := f(y) in (6), we get an upper bound on the right-hand side of (5):

g(αf(x) + (1− α)f(y)) ≤ αg(f(x)) + (1− α)g(f(y)),

so finally

g(f(αx+ (1− α)y)) ≤ αg(f(x)) + (1− α)g(f(y)).

b. We use a. with g(x) := ex and f(x) := βxTQx. Now we only need to show that (i) ex is monotonically

increasing, (ii) ex is convex, and (iii) βxTQx is convex.

(i) ∂
∂xe

x = ex ≥ 0 so ex is monotonically increasing.
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(ii) ∇2ex = ∂2

∂x2 e
x = ex > 0 for all x ∈ R. In this case the Hessian is a 1 × 1 matrix that is positive semidefinite,

because yexy = y2ex ≥ 0 for all y ∈ R, so ex is convex.

(iii) First we establish an expression for ∇2βxTQx = ∂2

∂x2 βx
TQx. We have

βxTQx =
∑
i

xi
∑
j

Qijxj =
∑
ij

Qijxixj =
∑
i

Qiix
2
i + 2

∑
i<j

Qijxixj ,

since Q is symmetric. We get
∂2

∂x2
xTQx = 2Qij ,

so ∇2βxTQx = 2βQ, which is a constant positive semidefinite matrix, by hypothesis. Therefore, βxTQx is convex.

4


