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Instructions:

Your answers must be stated and justified in a clear and logical form, and you must show all of your steps in order to

receive full marks. You may use any result from class without proof, unless you are being asked to prove this result. You

will be graded not only on correctness, but also on clarity of exposition. No collaboration is allowed.

Question 1 [2 marks] Let A ∈ Rn×n be a symmetric, positive definite matrix. Prove that all the diagonal entries Aii

of A are positive, for i = 1, . . . , n.

Solution: Since A is positive definite, we know that xTAx > 0 for all x ∈ Rn. In particular, for x = ei, e
T
i Aei > 0.

Observe that eTi A is the first row of A, and eTi Aei = Aii.

Question 2 [3 marks] Prove that for any symmetric matrix A ∈ Rn×n, there exists a finite constant β ∈ R such that

(A+ βI) is positive semidefinite.

Solution: The eigenvalues of A + βI are the values for λ that satisfy det(A + βI − λI) = 0. This can be rewritten

det(A+ (β − λ)I) = 0. Thus, λ is an eigenvalue of A+ βI if and only if σ = λ− β is an eigenvalue of A. In other words,

σ is an eigenvalue of A if and only if λ = σ + β is an eigenvalue of A + βI. If the smallest eigenvalue of A is σ1, then

choosing β = −σ1 guarantees that all eigenvalues values of A+ βI satisfy λi = σi + β = σi − σ1 ≥ 0.

Alternative proof: Since A is symmetric, we know that there exist Q orthogonal and D = diag(σ1, . . . , σn) such that

A = QDQT where σ1, . . . , σn are the eigenvalues of A. Consider the matrix Q(D + βI)QT which has eigenvalues

σ1 + β, . . . , σn + β. We can show that Q(D + βI)QT = QDQT + QβIQT = A + βI. Therefore, for any β ≥ −σ1, the

eigenvalues of A+ βI are nonnegative.

Question 3 [5 marks] Consider f : Rn → R where f ∈ C1(D) and D ⊆ Rn is a convex set. Note that f is not
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necessarily C2-smooth. Prove that if

(∇f(x)−∇f(y))T (x− y) ≥ 0, ∀x, y ∈ D,

then f is convex over D.

Solution: We have seen in class that f is convex over D if and only if

f(b) ≥ f(a) + (b− a)T∇f(a), for all a, b ∈ D,

that is, iff

f(b)− f(a)− (b− a)T∇f(a) ≥ 0 for all a, b ∈ D.

We now need to prove the above inequality. We use the first-order Taylor expansion of f(b) around a:

f(b) = f(a) + (b− a)T∇f(a+ λ(b− a)),

for some 0 ≤ λ ≤ 1. The gradient exists since f ∈ C1(D), a, b ∈ D and D is convex. We get

f(b)− f(a)− (b− a)T∇f(a) = f(a) + (b− a)T∇f(a+ λ(b− a))− f(a)− (b− a)T∇f(a)

= (b− a)T (∇f(a+ λ(b− a))−∇f(a))

If λ = 0, the above expression is 0 which satisfies the claim. Otherwise, we get

f(b)− f(a)− (b− a)T∇f(a) =
1

λ
λ(b− a)T (∇f(a+ λ(b− a))−∇f(a))

=
1

λ
(y − x)T (∇f(y)−∇f(x))

≥ 0,

where we defined x := a and y := a+ λ(b− a), then used the hypothesis.

Alternative solution: Let c = (1 − α)a + αb, for some a, b ∈ D, thus c ∈ D. Equivalently, we have a = c − α(b − a) and

b = c+ (1− α)(b− a). We need to prove that convexity holds, i.e.

f(z) ≥ (1− α)f(a) + αf(b),

for all such a, b, c in D. Let us write the Taylor expansion of f(a) around c:

f(a) = f(c)− α(b− a)T∇f(c− λα(b− a)), for some 0 ≤ λ ≤ 1,

and the Taylor expansion of f(b) around c:

f(b) = f(c) + (1− α)(b− a)T∇f(c+ σ(1− α)(b− a)), for some 0 ≤ σ ≤ 1.
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Taking a linear combination of these two equations with multipliers (1− α) and α, we get

(1− α)f(a) + αf(b) = (1− α)f(c) + αf(c)

−(1− α)α(b− a)T∇f(c− λα(b− a))

+α(1− α)(b− a)T∇f(c+ σ(1− α)(b− a))

= f(c) + α(1− α)(b− a)T (∇f(c+ σ(1− α)(b− a))−∇f(c− λα(b− a)))

= f(c) + α(1− α)(b− a)T (∇f(y + (αλ+ (1− α)σ)(b− a))−∇f(y)) ,

where we let y := c − λα(b − a). If both σ and λ are zero, then the above expression is zero and the claim is true.

Otherwise, (αλ+ (1− α)σ) > 0 and we can write

(1− α)f(a) + αf(b) = f(c) +
α(1− α)

αλ+ (1− α)σ
(αλ+ (1− α)σ)(b− a)T (∇f(y + (αλ+ (1− α)σ)(b− a))−∇f(y)) .

We can now let x := y + (αλ+ (1− α)σ)(b− a) and obtain

(1− α)f(a) + αf(b) = f(c) +
α(1− α)

αλ+ (1− α)σ
(x− y)T (∇f(x)−∇f(y))

≥ f(c).
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