CO 370 Fall 2019: Homework 3

Due: November 26 by 2:00pm

Instructions You will be graded not only on correctness, but also on clarity of exposition. You are allowed to talk with classmates about the assignment as long as (1) you acknowledge the people you collaborate with, (2) you write your solutions on your own, and (3) you are able to fully explain your solutions. In the models, always give a clear definition to your decision variables (in most cases, this means that you must explain what they represent in plain words). In case you run into trouble (a question is ambiguous, data provided have an issue, problem with the implementation, etc.), it is your responsibility to ask me or your TAs for clarifications in a timely manner.

Homework submission Your solutions are to be submitted on Crowdmark.

Question 1 [12 marks]

Consider the following linear programming problem (P) in SEF.

s.t. $x_1 + x_2 + x_3 = 2x_1 + x_2 + x_3 = x_1 + x_2 + x_4 = x_1 + x_5 = x_1 + x_2 + x_3 + x_5 = x_1 + x_1 + x_2 + x_2 + x_2 + x_5 = x_1 + x_2 + x_5 = x_1 + x_1 + x_2 + x_2 + x_2 + x_1 + x_2 + x_2 + x_1 + x_2 + x_2 + x_2 + x_1 + x_2 + x_2 + x_2 + x_1 + x_2 + x_2 + x_2 + x_2 + x_2 + x_3 + x_2 + x_1 + x_2 + x_2 + x_2 + x_1 + x_2 + x_2 + x_2 + x_2 + x_3 + x_2 + x_3 + x_3 + x_5 $	\min	_	x_1	_	$2x_2$								
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	s.t.		x_1	+	x_2	+	x_3					=	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$2x_1$	+	x_2			+	x_4			=	6
x_1 , x_2 , x_3 , x_4 , x_5 \geq				_	x_2					+	x_5	=	3
			x_1	,	x_2	,	x_3	,	x_4	,	x_5	\geq	0

- (a) Prove that the basis $\mathcal{B} = \{2, 4, 5\}$ is an optimal basis, and write down the corresponding optimal basic solution.
- (b) Find the allowable range for the cost c_j of every variable x_j (for j = 1, ..., 5). In other words, find the range of values that θ can take such that \mathcal{B} remains an optimal basis when we replace the objective function coefficient c_j by $c_j + \theta$ (note: only one objective coefficient is changing at a time).
- (c) Find the allowable range for the right-hand side b_i of each constraint *i* (for i = 1, ..., 3) other than the nonnegativity constraints. In other words, find the range of values that θ can take such that \mathcal{B} remains an optimal basis when we change the right-hand side b_i to $b_i + \theta$ (note: only one right-hand side is changing at a time).
- (d) Suppose that the right-hand side of the second constraint changes from 6 to 3. Find a new optimal solution by applying the dual simplex algorithm.

Question 2 [10 marks]

A company produces 4 types of products P_1, P_2, P_3, P_4 using 4 types of resources R_1, R_2, R_3, R_4 . The following table shows the amount of each resource that is needed to produce one unit of each product, together with the total availability for each resource and the profit obtainable by selling one unit of each product.

	P_1	P_2	P_3	P_4	resource availability
R_1	10	15	20	20	130
R_2	1	2	3	1	13
R_3	3	1	12	3	45
R_4	2	4	7	3	23
profit (\$)	51	102	132	89	

(a) Formulate as an LP the problem of deciding the production plan in order to maximize the profit.

(b) Suppose that the shadow prices and the used amount of each resource in an optimal solution are as follows:

resource	shadow price	used amount
R_1	1.429	130
R_2	0	9
R_3	0	17
R_4	20.143	23

- (i) The company has the option to sell 20 units of the resource R_1 at 1.1 dollar per unit to another company. Without solving a new LP, state whether or not the company should go for this option. Justify your answer.
- (ii) The company has the possibility to produce a new product P_5 and sell it for 10 dollars per unit. To produce 1 unit of the new product the company needs 2 units of R_2 and 4 units of R_3 . Without solving a new LP, state whether or not the company should consider this option. Justify your answer.
- (iii) The company has the possibility to produce a new product P_6 . To produce 1 unit of the new product the company needs 3 units of R_1 , 2.4 units of R_2 and 5.1 units of R_4 . What should be the minimum price that the company should set for 1 unit of P_6 in order to consider this option? Justify your answer.
- (iv) The company has the possibility to sell to another company any amount of resource R_4 at a price of 20 dollars per unit. How does this change the model? Without solving a new LP, can you say whether the current optimal solution will still be optimal for the new model?

Question 3 [10 marks]

Consider the linear programming problem

$$\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0, \end{array} \tag{P}$$

where $A \in \mathbb{R}^{3 \times 5}$, $b \in \mathbb{R}^3$ and $c \in \mathbb{R}^5$. We know that the last three columns of A form an identity matrix, i.e.

$$A = \left[\begin{array}{rrrrr} ? & ? & 1 & 0 & 0 \\ ? & ? & 0 & 1 & 0 \\ ? & ? & 0 & 0 & 1 \end{array} \right]$$

We are given a tableau of (P) corresponding to the basis $\mathcal{B} = \{2, 4, 1\}$:

r

nin					$\overline{c}_3 x_3$			+	$\bar{c}_5 x_5$		
s.t.			x_2	—	x_3			+	βx_5	=	1
					$2x_3$	+	x_4	+	γx_5	=	2
	x_1			+	$4x_3$			+	δx_5	=	3
	x_1	,	x_2	,	x_3	,	x_4	,	x_5	\geq	0,

where $\bar{c}_3, \bar{c}_5, \beta, \gamma, \delta \in \mathbb{R}$ are constants.

- 1. Give (necessary and sufficient) conditions under which \mathcal{B} is an optimal basis.
- 2. Suppose that \mathcal{B} is optimal and $\bar{c}_3 = 0$. Let \tilde{x} be the basic solution associated to \mathcal{B} . Find a basic feasible solution that is also optimal but distinct from \tilde{x} .
- 3. Suppose that $\gamma > 0$. Show that there always exists a (finite) optimal solution, regardless of the values of \bar{c}_3 and \bar{c}_5 .
- 4. Suppose that \mathcal{B} is optimal. Give the allowable range for b_1 , the right-hand side of the first constraint in the initial problem. In other words, give the values that θ can take such that \mathcal{B} remains optimal when b_1 is replaced by $b_1 + \theta$. (Beware that we want the range on the right-hand side b_1 of the *initial* problem, whose numerical value is not given, *not* the range on $\bar{b}_1 = 1$ in the optimal tableau corresponding to \mathcal{B} .) Parameters can appear in the answer.
- 5. Suppose that \mathcal{B} is optimal. Give the allowable range for c_1 , the cost of x_1 in the initial problem. In other words, give the values that θ can take such that \mathcal{B} remains optimal when c_1 is replaced by $c_1 + \theta$. (Beware that we want the range on the cost c_1 of the *initial* problem, whose numerical value is not given, *not* the range on $\bar{c}_1 = 0$ in the optimal tableau corresponding to \mathcal{B} .) Parameters can appear in the answer.