
CO 370 Fall 2019: Homework 3

Due: November 26 by 2:00pm

Instructions You will be graded not only on correctness, but also on clarity of exposition. You are allowed to

talk with classmates about the assignment as long as (1) you acknowledge the people you collaborate with, (2) you

write your solutions on your own, and (3) you are able to fully explain your solutions. In the models, always give

a clear definition to your decision variables (in most cases, this means that you must explain what they represent

in plain words). In case you run into trouble (a question is ambiguous, data provided have an issue, problem with

the implementation, etc.), it is your responsibility to ask me or your TAs for clarifications in a timely manner.

Homework submission Your solutions are to be submitted on Crowdmark.

Question 1 [12 marks]

Consider the following linear programming problem (P ) in SEF.

min − x1 − 2x2

s.t. x1 + x2 + x3 = 4

2x1 + x2 + x4 = 6

− x2 + x5 = 3

x1 , x2 , x3 , x4 , x5 ≥ 0

(a) Prove that the basis B = {2, 4, 5} is an optimal basis, and write down the corresponding optimal basic solution.

(b) Find the allowable range for the cost cj of every variable xj (for j = 1, . . . , 5). In other words, find the range of

values that θ can take such that B remains an optimal basis when we replace the objective function coefficient

cj by cj + θ (note: only one objective coefficient is changing at a time).

(c) Find the allowable range for the right-hand side bi of each constraint i (for i = 1, . . . , 3) other than the non-

negativity constraints. In other words, find the range of values that θ can take such that B remains an optimal

basis when we change the right-hand side bi to bi + θ (note: only one right-hand side is changing at a time).

(d) Suppose that the right-hand side of the second constraint changes from 6 to 3. Find a new optimal solution

by applying the dual simplex algorithm.

Solution:

(a) The basis B = {2, 4, 5} is optimal if the basic solution is nonnegative and the corresponding reduced costs

are nonnegative. We can either apply the formulas x̄B = b̄ = B−1b and c̄T = cT − cTBB−1A or compute the

full tableau corresponding to B. To get the tableau, we first express the basic variables as a function of the
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nonbasic variables:
x2 = 4 − x1 − x3

x4 = 2 − x1 + x3

x5 = 7 − x1 − x3 .

We can now eliminate x1, x2 and x4 from the objective function, yielding the tableau

min x1 + 2x3

s.t. x1 + x2 + x3 = 4

x1 − x3 + x4 = 2

x1 + x3 + x5 = 7

x1 , x2 , x3 , x4 , x5 ≥ 0

Since x̄ = (0, 4, 0, 2, 7) ≥ 0 and c̄ = (1, 0, 2, 0, 0) ≥ 0, the basis B = {2, 4, 5} is optimal.

(b) We computed c̄ in part (a). For the nonbasic variables we simply need to have c̄j + θ ≥ 0. Thus, for x1, we

need 1 + θ ≥ 0 and for x3, we need 2 + θ ≥ 0.

For the basic variables, we need c̄TN − θ · eTi B−1N ≥ 0 where eTi B
−1N is the nonbasic part of the ith row of

the tableau above. For x2, which is basic in row i = 1, this means

[1 2]− θ[1 1] ≥ 0, thus θ ≤ 1 (and θ ≤ 2).

For x4, which is basic in row i = 2, this means

[1 2]− θ[1 − 1] ≥ 0, thus θ ≤ 1 and θ ≥ −2.

For x5, which is basic in row i = 3, this means

[1 2]− θ[1 1] ≥ 0, thus θ ≤ 1 (and θ ≤ 2).

In summary, we have

c′1 = c1 + θ nonbasic θ ∈ [−1; +∞]

c′2 = c2 + θ basic θ ∈ [−∞; +1]

c′3 = c3 + θ nonbasic θ ∈ [−2; +∞]

c′4 = c4 + θ basic θ ∈ [−2; +1]

c′5 = c5 + θ basic θ ∈ [−∞; +1]

(c) For bi, we require B−1b + θ · B−1ei ≥ 0, i.e. b̄ + θ · B−1ei ≥ 0, where B−1ei is the ith column of B−1. Since

the last three columns of A are an identity matrix, the relation Ā = B−1A gives us Ā{3,4,5} = B−1I, giving us

B−1 immediately:

B−1 =

 1 0 0

−1 1 0

1 0 1


For b1 we have  4

2

7

+ θ

 1

−1

1

 ≥ 0, thus


θ ≥ −4

θ ≤ 2

θ ≥ −7.
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For b2 we have  4

2

7

+ θ

 0

1

0

 ≥ 0, thus θ ≥ −2.

For b3 we have  4

2

7

+ θ

 0

1

0

 ≥ 0, thus θ ≥ −7.

In summary, we have

b′1 = b1 + θ, θ ∈ [−4; +2]

b′2 = b2 + θ, θ ∈ [−2; +∞]

b′3 = b3 + θ, θ ∈ [−7; +∞]

(d) We compute the new right-hand sides b̄′ for the tableau associated with the (previously-optimal) basis {2, 4, 5}.
We have

b̄′ = B−1b′ = B−1 =

 1 0 0

−1 1 0

1 0 1


 4

3

3

 =

 4

−1

7

 .
We thus have the starting tableau

min x1 + 2x3

s.t. x1 + x2 + x3 = 4

x1 − x3 + x4 = −1

x1 + x3 + x5 = 7

x1 , x2 , x3 , x4 , x5 ≥ 0

In the dual simplex method, we need all reduced-costs to be nonnegative (which is the case) and we pick a row

with a negative right-hand side to determine the leaving variable. Row i = 2 has b̄2 = −1, so x4, which is basic

in row 2, will leave the basis. The ratio test is min{ c̄j
Āij
|Aij < 0}. We only have one Aij < 0, namely A23 = −1

for j = 3 so x3 will enter the basis. Our next basis is thus {2, 3, 5} and we obtain the following corresponding

tableau:
min 3x1 + 2x4

s.t. 2x1 + x2 + x4 = 3

− x1 + x3 − x4 = 1

2x1 + x4 + x5 = 6

x1 , x2 , x3 , x4 , x5 ≥ 0

We see that all basic variables are ≥ 0, so this basis is actually optimal. The new optimal solution is x∗ =

(0, 3, 1, 0, 6) with objective function value z∗ = −x∗1 − 2x∗2 = −6.

Question 2 [10 marks]

A company produces 4 types of products P1, P2, P3, P4 using 4 types of resources R1, R2, R3, R4. The following

table shows the amount of each resource that is needed to produce one unit of each product, together with the

total availability for each resource and the profit obtainable by selling one unit of each product.
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P1 P2 P3 P4 resource availability

R1 10 15 20 20 130

R2 1 2 3 1 13

R3 3 1 12 3 45

R4 2 4 7 3 23

profit ($) 51 102 132 89

(a) Formulate as an LP the problem of deciding the production plan in order to maximize the profit.

Solution:
max 51x1 + 102x2 + 132x3 + 89x4

s.t. 10x1 + 15x2 + 20x3 + 20x4 ≤ 130

x1 + 2x2 + 3x3 + x4 ≤ 13

3x1 + x2 + 12x3 + 3x4 ≤ 45

2x1 + 4x2 + 7x3 + 3x4 ≤ 23

x ≥ 0

(b) Suppose that the shadow prices and the used amount of each resource in an optimal solution are as follows:

resource shadow price used amount

R1 1.429 130

R2 0 9

R3 0 17

R4 20.143 23

(i) The company has the option to sell 20 units of the resource R1 at 1.1 dollar per unit to another company.

Without solving a new LP, state whether or not the company should go for this option. Justify your

answer.

Solution: The company should not go for this option. Reducing the availability of R1 by 20 units will

decrease the objective function value by at least 20 ·1.429 = 28.58 dollars which is more than 20 ·1.1 = 22

dollars that the company is getting from selling the resource to another company.

(ii) The company has the possibility to produce a new product P5 and sell it for 10 dollars per unit. To

produce 1 unit of the new product the company needs 2 units of R2 and 4 units of R3. Without solving

a new LP, state whether or not the company should consider this option. Justify your answer.

Solution: The company should consider this option. Note that the shadow prices for constraints 2 and

3 are zero, and one can see that reducing the availability of R2 by 2 units and of R3 by 4 units will not

decrease the objective function value (we are not using the whole available amount of these resources),

while the company could increment the profit by selling a positive amount of P5.

(iii) The company has the possibility to produce a new product P6. To produce 1 unit of the new product the

company needs 3 units of R1, 2.4 units of R2 and 5.1 units of R4. What should be the minimum price

that the company should set for 1 unit of P6 in order to consider this option? Justify your answer.

Solution: Diverting 3 units of R1, 2.4 units of R2 and 5.1 units of R4 to produce P6 will decrease the

objective function value by at least 3 · 1.429 + 5.1 · 20.143 = 107.0163 dollars, and therefore the price of

P6 should be at least that amount to consider the option.
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(iv) The company has the possibility to sell to another company any amount of resource R4 at a price of 20

dollars per unit. How does this change the model? Without solving a new LP, can you say whether the

current optimal solution will still be optimal for the new model?

Solution: This can be modelled by introducing a slack variable for constraint 4 with objective function

coefficient equal to 20. According to the data we have, diverting any amount α of resource R4 will decrease

the objective function by at least 20.143α, and the company will get only 20α from selling the resource

to another company. So, even if the company has this option, the current solution is still optimal.

Question 3 [10 marks]

Consider the linear programming problem

min cTx

s.t. Ax = b

x ≥ 0,

(P)

where A ∈ R3×5, b ∈ R3 and c ∈ R5. We know that the last three columns of A form an identity matrix, i.e.

A =

 ? ? 1 0 0

? ? 0 1 0

? ? 0 0 1

 .
We are given a tableau of (P) corresponding to the basis B = {2, 4, 1}:

min c̄3x3 + c̄5x5

s.t. x2 − x3 + βx5 = 1

2x3 + x4 + γx5 = 2

x1 + 4x3 + δx5 = 3

x1 , x2 , x3 , x4 , x5 ≥ 0,

where c̄3, c̄5, β, γ, δ ∈ R are constants.

1. Give (necessary and sufficient) conditions under which B is an optimal basis.

2. Suppose that B is optimal and c̄3 = 0. Let x̃ be the basic solution associated to B. Find a basic feasible

solution that is also optimal but distinct from x̃.

3. Suppose that γ > 0. Show that there always exists a (finite) optimal solution, regardless of the values of c̄3

and c̄5.

4. Suppose that B is optimal. Give the allowable range for b1, the right-hand side of the first constraint in

the initial problem. In other words, give the values that θ can take such that B remains optimal when b1 is

replaced by b1 + θ. (Beware that we want the range on the right-hand side b1 of the initial problem, whose

numerical value is not given, not the range on b̄1 = 1 in the optimal tableau corresponding to B.) Parameters

can appear in the answer.

5. Suppose that B is optimal. Give the allowable range for c1, the cost of x1 in the initial problem. In other

words, give the values that θ can take such that B remains optimal when c1 is replaced by c1 + θ. (Beware
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that we want the range on the cost c1 of the initial problem, whose numerical value is not given, not the

range on c̄1 = 0 in the optimal tableau corresponding to B.) Parameters can appear in the answer.

Solution:

1. The basis B is optimal if and only if c3 ≥ 0 and c5 ≥ 0

2. We have x̃ = (3, 1, 0, 2, 0). We can let x3 enter the basis, yielding another solution with the same cost.

The ratio test (of the primal simplex method) gives us:

min{2

2
,

3

4
} =

3

4

so x1 leaves the basis. The new tableau is

min c5x5

s.t. 1
4x1 +x2 +(β + δ

4 )x5 = 7/4

− 1
2x1 +x4 +(γ − δ

2 )x5 = 1/2
1
4x1 +x2 +( δ4 )x5 = 3/4

x1, x2, x3, x4, x5 ≥ 0

Another optimal basic solution is thus

x = (0, 7/4, 3/4, 1/2, 0).

3. For this subquestion, let us consider the problem (P’) given by the tableau associated with basis {2, 4, 1},
instead of the original problem (P). Indeed, since tableaux are just reformulations of the original problem,

(P) has an optimal solution if and only if (P’) has one. From now on, we will refer to (P’) as our primal.

We will show that there exist both a primal feasible solution and a dual feasible solution. Thus, by weak

duality, the primal is feasible and bounded below. As a consequence an optimal solution must exist.

A primal feasible solution is given by, for example, x̃ = (3, 1, 0, 2, 0).

The dual of (P’) is

max y1 + 2y2 + 3y3

s.t. y3 ≤ 0

y1 ≤ 0

−y1 + 2y2 + 4y3 ≤ c̄3

y2 ≤ 0

βy1 + γy2 + δy3 ≤ c̄5

y1 , y2 , y3 free

which simplifies to

max y1 + 2y2 + 3y3

s.t. −y1 + 2y2 + 4y3 ≤ c̄3

βy1 + γy2 + δy3 ≤ c̄5

y1 , y2 , y3 ≤ 0.

Let us try to construct a feasible solution. We start by fixing as many variables as possible to zero to simplify
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the construction. In particular, if we fix y1 = 0 and y3 = 0, then we need to find a value of y2 such that

2y2 ≤ c̄3

γy2 ≤ c̄5

y2 ≤ 0.

Let us consider

µ = min

{
c3
2
,
c5
γ
, 0

}
.

We know that µ exists because γ 6= 0. We now have that ỹ = (0, µ, 0) is dual feasible.

4. Since A = [A1 A2 I], the simplex tableau gives us Ā = B−1A = B−1[A1 A2 I], so we have

B−1 =

 −1 0 β

2 1 γ

4 0 δ

 .
We want x′B ≥ 0, where

x′B = B−1(b+ θe1) = B−1b+B−1θe1

thus

B−1b+ θ ·B−1e1 ≥ 0

⇔

 −θ2θ

4θ

 ≥
 −1

−2

−3

⇔


θ ≤ 1

θ ≥ −1

θ ≥ −3/4

⇔ −3/4 ≤ θ ≤ 1

5. x1 is basic in the row i = 3, so the optimality condition can be expressed

c′T = c′T − c′TB B−1A ≥ 0

⇒ cT + θeT1 − (cTB + θeT3 )B−1A ≥ 0

⇔ cT − cTBB−1A+ θeT1 − θeT3 B−1A ≥ 0

⇔ cT − cTBB−1A+ θeT1 − θ[1 0 4 0 δ] ≥ 0

⇔ cT ≥ [0 0 4θ 0 δθ]

⇔ [0 0 c3 0 c5] ≥ [0 0 4θ 0 δθ]

⇔

{
c3 ≥ 4θ

c5 ≥ δθ

Therefore, θ ≤ c̄3
4 and θδ ≤ c̄5. Depending on the sign of δ, we have

θ ∈ [
c̄5
δ

;
c̄3
4

] if δ < 0

θ ∈ [−∞ ;
c̄3
4

] if δ = 0

θ ∈ [−∞ ; min
{ c̄3

4
,
c̄5
δ

}
] if δ > 0
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