
CO 370 Fall 2019: Homework 4

Due: December 3rd by 5:00pm

Instructions You will be graded not only on correctness, but also on clarity of exposition. You are allowed to

talk with classmates about the assignment as long as (1) you acknowledge the people you collaborate with, (2) you

write your solutions on your own, and (3) you are able to fully explain your solutions. In the models, always give

a clear definition to your decision variables (in most cases, this means that you must explain what they represent

in plain words). In case you run into trouble (a question is ambiguous, data provided have an issue, problem with

the implementation, etc.), it is your responsibility to ask me or your TAs for clarifications in a timely manner.

Homework submission Your solutions are to be submitted on Crowdmark.

Question 1 [15 marks] Consider the following problem:

max 2x1 + 4x2 + 6x3 + x4 + 5x5

s.t. 9x1 + 13x2 + 7x3 + 14x4 + 21x5 ≤ 40

x ∈ {0, 1}5.
(P)

Solve (P) using the branch-and-bound method. At any given node of the branch-and-bound tree, if the optimal

LP solution is x̃ with x̃i /∈ Z and branching is required, always fully explore the subtree in which xi = 0 before

exploring the subtree in which xi = 1. (In technical terms, perform a depth-first search on the branch-and-bound

tree, always starting with the “= 0” branch.)

For every node, give the optimal LP solution and its objective function value (or write “infeasible”), and if branching

is not required, specify why (pruning, infeasible, integer). Separately, draw the branch-and-bound tree.

Solution: We first reorder the variables such that c1
a1
≥ · · · ≥ c5

a5
:

max 6y1 + 4y2 + 5y3 + 2y4 + y5

s.t. 7y1 + 13y2 + 21y3 + 9y4 + 14y5 ≤ 40

x ∈ {0, 1}5.
(P’)

where

x3 = y1, x2 = y2, x5 = y3, x1 = y4, x4 = y5.
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node fixed LP relaxation best integer

(P ′) ỹ = (1, 1, 20
21 , 0, 0), z̃ = 14 + 16

21

(P ′0) y3 = 0 ỹ = (1, 1, 0, 1, 11
14 ), z̃ = 12 + 11

14

(P ′00) y3 = 0, y5 = 0 ỹ = (1, 1, 0, 1, 0), z̃ = 12 integer z̄ = 12

(P ′01) y3 = 0, y5 = 1 ỹ = (1, 1, 0, 2
3 , 1), z̃ = 12 + 1

3 z̄ = 12

(P ′010) y3 = 0, y5 = 1, y4 = 0 ỹ = (1, 1, 0, 0, 1), z̃ = 11 integer z̄ = 12

(P ′011) y3 = 0, y5 = 1, y4 = 1 ỹ = (1, 10
13 , 0, 1, 1), z̃ = 12 + 1

13 z̄ = 12

(P ′0110) y3 = 0, y5 = 1, y4 = 1, y2 = 0 ỹ = (1, 0, 0, 1, 1), z̃ = 9 integer z̄ = 12

(P ′0111) y3 = 0, y5 = 1, y4 = 1, y2 = 1 ỹ = ( 4
7 , 1, 0, 1, 1), z̃ = 10 + 3

7 ≤ 12,pruning z̄ = 12

(P ′1) y3 = 1 ỹ = (1, 12
13 , 1, 0, 0), z̃ = 14 + 9

13 z̄ = 12

(P ′10) y3 = 1, y2 = 0 ỹ = (1, 0, 1, 0, 3
14 ), z̃ = 13 + 3

14 z̄ = 12

(P ′100) y3 = 1, y2 = 0, y5 = 0 ỹ = (1, 0, 1, 1, 0), z̃ = 13 integer z̄ = 13

(P ′101) y3 = 1, y2 = 0, y5 = 1 ỹ = ( 5
7 , 0, 1, 0, 1), z̃ = 10 + 2

7 ≤ 13,pruning z̄ = 13

(P ′11) y3 = 1, y2 = 1 ỹ = ( 6
7 , 1, 1, 0, 0), z̃ = 14 + 1

7 z̄ = 13

(P ′110) y3 = 1, y2 = 1, y1 = 0 ỹ = (0, 1, 1, 2
3 , 0), z̃ = 10 + 1

3 ≤ 13,pruning z̄ = 13

(P ′111) y3 = 1, y2 = 1, y1 = 1 ỹ = (1, 1, 1, ?, ?) infeasible z̄ = 13

An optimal integer solution is given by

y∗ = [1 0 1 1 0]T with z∗ = 13.

and since x3 = y1, x2 = y2, x5 = y3, x1 = y4 and x4 = y5, we get

x∗ = [1 0 1 0 1]T with z∗ = 13.
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Question 2 [15 marks] Consider a matrix A ∈ Rm×n such that:

• every element Aij of A is either 0 or 1, and

• whenever Aij = 1 and Akj = 1 for some j and for some i < k, then we also have A`j = 1 for all i ≤ ` ≤ k.

Prove that A is totally unimodular.

Solution: In order to prove that A is TU, we need to prove that every square submatrix B of A is unimodular

(i.e. det(B) ∈ {−1, 0, 1}). Let B ∈ Rp×p be any square submatrix of A. Observe that B possesses the same

properties as A, i.e. (i) every element Bij of B is either 0 or 1, and (ii) whenever Bij = 1 and Bkj = 1 for some j

and for some i < k, then we also have B`j = 1 for all i ≤ ` ≤ k.

We know that if a matrix B′ is obtained from B by adding a multiple of one row to another, i.e.

B′ij =

{
Bij if i 6= t

Btj + λBsj if i = t

for some λ ∈ R and s 6= t, then det(B′) = det(B). We will apply this operation multiple times: we subtract row 2

from row 1, then row 3 from row 2, then row 4 from row 3, . . . , then row p from row p − 1. Row p is left intact,

which corresponds to subtracting a zero row from it. More rigorously, we construct a matrix B̃ that satisfies

B̃ij =

{
Bij −Bi+1,j , if i < p

Bpj , if i = p
= B∗ij −B∗i+1,j ,

where B∗ is a matrix obtained by appending a row of zeros to B, i.e. B∗ij = Bij for all i, j ≤ p and B∗p+1,j = 0 for

all j. Equivalently,

B̃ij =


0 if B∗ij = B∗i+1,j (a)

−1 if B∗ij = 0 and B∗i+1,j = 1 (b)

+1 if B∗ij = 1 and B∗i+1,j = 0. (c)

Observe that, by construction, B∗ also has the same properties as A. Therefore, let us look at an individual

column j of B∗ (see Figure 1). If condition (b) is satisfied for some row h, i.e. if B∗hj = 0 and B∗h+1,j = 1, then

condition (b) cannot be satisfied for any row i 6= h, as it would mean having two ones in the column that are

separated by zeros. Similarly, if condition (c) is satisfied for some row h, i.e. if B∗hj = 1 and B∗h+1,j = 0, then

condition (c) cannot be satisfied for any row i 6= h. As a consequence, we know that column j of B̃ has at most

one element +1, at most one element −1, and all other elements are zeros. We have seen in class that this means

that B̃ is totally unimodular, i.e. all submatrices of B̃ are unimodular. In particular, B̃ itself is unimodular, i.e.

det(B̃) ∈ {−1, 0,+1}. Since we constructed B̃ from B by applying operations that preserve the determinant, we

have det(B) = det(B̃) ∈ {−1, 0,+1}.

B∗.e1 =



0
0
0
1
1
1
1
0
0


, B̃.e1 =



0
0
−1
0
0
0
1
0


B∗.e2 =



1
1
1
1
0
0
0
0
0


, B̃.e2 =



0
0
0
1
0
0
0
0



Figure 1: Two example columns of B∗ and B̃. Observe that the last entry of B∗.ej is always zero.
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