University of Waterloo - CO 370 Midterm - Fall 2019

Tue Oct 29, 2019 – 10am to 11:20am (80 minutes) Closed book – no calculators, no materials allowed

Solutions

Question 1 [3 marks] Circle the correct answer. No justification necessary.

1. In Julia/JuMP, the expression

 $\sum_{i=1}^{5} 3i$

is written

- (a) sum(i = 1:5, 3 * i)
- (b) (correct) sum(3 * i for i = 1:5)
- (c) sum(3 * i for i = [1, 5])
- (d) sum(i = [1, 5], 3 * i)

2. In Julia/JuMP, the constraint

 $x+y \leq 5$

can be written (for a model md with variables x and y)

- (a) (correct) $@constraint(md, x + y \le 5)$
- (b) @constraint(md, x + y, <=, 5)
- (c) <code>@constraint(md, x + y) <= 5</code>
- (d) $\operatorname{@constraint(md, sum(x, y))} \leq 5$

3. In Julia/JuMP, if a variable was declared using @variable(md, x) for a model md, its value can be accessed by writing

- (a) &x
- (b) x.value
- (c) x.value()
- (d) (correct) value(x)

Question 2 [6 marks] Consider the following linear programming problem

where $a, b \in \mathbb{R}$ are constants. We do not know the value of a and b, but we are told that $y^* = \begin{pmatrix} 2, 0, 0.5, 0, 0.5 \end{pmatrix}^T$ is a dual optimal solution. Let x^* be a primal optimal solution.

- 1. Write the dual of (P).
- 2. Find the numerical value of x_2^* and x_3^* .
- 3. Find the numerical value of the objective function at x^* .
- 4. Find the numerical value of x_4^* .
- 5. Find the numerical value of **b**.

Note that a and b can appear in the answer to (1), but the answers to (2)-(5) must be numerical.

Solution: 1. The dual of (P) is

2. By complementary slackness, the 1st, 3rd and 5th constraints of (P) are tight. In particular, the 1st and 3rd give

$$\begin{cases} x_2^* + x_3^* = 4\\ 2x_2^* - x_3^* = 8 \end{cases} \Leftrightarrow \begin{cases} x_2^* = 4\\ x_3^* = 0 \end{cases}$$

3. The objective function in (D) gives us

$$z^* = 4 \cdot 2 + 4 \cdot 0 + 8 \cdot 0.5 + 4 \cdot 0 + 3 \cdot 0.5 = 13.5.$$

By strong duality, z^* is also the optimal objective function value for (P). Using the objective function in (P), we obtain that

 $z^* = 13.5 = 2 \cdot 4 + 2 \cdot 0 + x_4^* \quad \Rightarrow \quad x_4^* = 1.5$

4. Using the fact that the 5th constraint is tight, we get

$$x_3^* + bx_4^* = 3 \quad \Leftrightarrow \quad 0 + b \cdot 1.5 = 3 \quad \Leftrightarrow \quad b = 2.$$

3. and 4. (alternative approach) We compute *b* first. The last constraint of (D) is $ay_2 + by_5 = 1$. We know that the given dual solution $y^* = \begin{pmatrix} 2, & 0, & 0.5, & 0, & 0.5 \end{pmatrix}^T$ satisfies this constraint, yielding $a \cdot 0 + b \cdot 0.5 = 1$ hence b = 2.

Now, using the fact that the 5th constraint is tight, we get

$$x_3^* + bx_4^* = 3 \quad \Leftrightarrow \quad 0 + 2 \cdot x_4^* = 3 \quad \Leftrightarrow \quad x_4^* = 1.5$$

Question 3 [6 marks] Consider a set of N objects indexed $\{1, \ldots, N\}$. For each pair $\{i, j\}$ of objects, we are given a constant $D_{ij} \in \mathbb{R}$, which measures the "affinity" between the objects. For all $i, j \in \{1, \ldots, N\}$, we have:

(i) $D_{ij} = D_{ji}$,

(ii) $D_{ii} = 0,$

(iii) D_{ij} can be positive, negative or zero.

We want to select a subset of K objects (out of the N objects) that maximizes the sum of the pairwise affinities D_{ij} between the selected objects.

For illustrative purposes, consider an example, with N = 4, K = 3, and

$$D = \begin{pmatrix} 0 & 3 & 2 & 2 \\ 3 & 0 & -1 & 1 \\ 2 & -1 & 0 & 4 \\ 2 & 1 & 4 & 0 \end{pmatrix}$$

.

A subset $\{1, 2, 3\}$ would have a sum $D_{12} + D_{13} + D_{23} = 3 + 2 + (-1) = 4$. However, a subset $\{1, 3, 4\}$ would be better, with a sum $D_{13} + D_{14} + D_{34} = 2 + 2 + 4 = 8$.

Given constants N > 0, K > 0 and $D_{ij} \in \mathbb{R}$ for all $i, j \in \{1, ..., N\}$, model this problem as an integer programming problem. (Remark: your IP must be valid for all N, K and D, not just for the example above, which is given only to illustrate the problem statement.)

Solution:

Variables:

$$x_{i} = \begin{cases} 1 \text{ if object } i \text{ is taken,} \\ 0 \text{ otherwise,} \end{cases} \quad \text{for } i = 1, \dots, N.$$
$$z_{ij} = \begin{cases} 1 \text{ if objects } i \text{ and } j \text{ are both taken,} \\ 0 \text{ otherwise,} \end{cases} \quad \text{for } i = 1, \dots, N, \ j = 1, \dots, i-1$$

Model:

$$\max \sum_{i=1}^{N} \sum_{j=1}^{i-1} d_{ij} z_{ij}$$
s.t.
$$\sum_{i=1}^{N} x_i = K$$

$$x_i + x_j \leq z_{ij} + 1 \quad \forall i = 1, \dots, N, \; \forall j = 1, \dots, i-1$$

$$x_i \geq z_{ij} \quad \forall i = 1, \dots, N, \; \forall j = 1, \dots, i-1$$

$$x_j \geq z_{ij} \quad \forall i = 1, \dots, N, \; \forall j = 1, \dots, i-1$$

$$x_j \in \{0, 1\} \quad \forall i = 1, \dots, N$$

$$z_{ij} \in \{0, 1\} \quad \forall i = 1, \dots, N, \; \forall j = 1, \dots, i-1$$

Explanation: Regarding the objective function, we maximize the sum of the affinities. Note that we sum over all i, j such that j < i, because we defined z_{ij} for those indices only. We could have defined z_{ij} for all i, j, in which case we would have had to simply divide the corresponding sum by two.

The first constraint $\sum_{i=1}^{N} x_i = K$ ensures that we select exactly K objects. The rest of the constraints ensure that z_{ij} is consistent with the value of x_i . Specifically, for every z_{ij} , we must force its value to 1 if both x_i and x_j are 1:

$$z_{ij} \ge x_i + x_j - 1 \tag{1}$$

and we force its value to 0 otherwise:

$$z_{ij} \le x_i \quad , \qquad z_{ij} \le x_j \tag{2}$$

or as an alternative

$$z_{ij} \le \frac{1}{2}(x_i + x_j).$$

Remark that all the above constraints are necessary because, since d_{ij} can be of any sign, we don't know if individual z_{ij} are minimized or maximized. Also, while there is (at least) one alternative way to implement (2), $z_{ij} \ge \frac{1}{2}(x_i + x_j)$ is **not** a valid alternative to (1), since having $x_i = 1$ and $x_j = 0$ would already force $z_{ij} = 1$.