CO 370

Deterministic Operations Research Models

Instructor: Laurent Poirrier

lpoirrier@uwaterloo.ca

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

What is this course about?

Theory and practice of Operations Research (OR),

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

application to real problems.

Operations Research:

 \rightarrow solve decision-making problems

using mathematical modeling and optimization.

Applications:

military (logistics, supply chain)

- manufacturing (scheduling, lot sizing)
- transportation (vehicle routing, shortest path)
- telecommunications (flow problems, network design)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

financial engineering (portfolio management)

What will we learn?

- Modeling: formulate problem mathematically,
- Solving: find solution algorithmically.

Objective of the course: solve practical problems on your own computer.

What will we learn?

- Modeling: formulate problem mathematically,
- Solving: find solution algorithmically.

Objective of the course: solve practical problems on your own computer.

Course organisation (see syllabus on learn)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Material covered:

- Linear optimization
- Integer optimization
- Decision-making under uncertainty
- Solving large-scale models.

Prerequisite: CO 250 or similar.

Grading

4 homework assignments	20%
Midterm	30%
Final	50%

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Check learn / web page of the course!

Part I: Linear Optimization

Linear Programming (LP) is the problem of maximizing or minimizing a **linear function** subject to a finite number of **linear constraints**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Linear Programming (LP) is characterized by

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- decision variables,
- ► a linear objective function,
- ▶ a (finite) number of linear constraints.

A company produces NH_3 and NH_4Cl .

component	stock						
N	50 kmol						
H	180 kmol						
Cl	40 kmol						
product	revenue						

product	revenue							
NH_3	\$40 / kmol							
NH_4Cl	\$50 / kmol							

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Plan production to maximize profit.

<pre>@variable(model, x1)</pre>										
<pre>@variable(model, x2)</pre>										
Cobjective(model, Max,	40	*	x1	+	50	*	x2)
5										
<pre>@constraint(model, N,</pre>			x1	+			x2	<=	50)
@constraint(model_H	3	*	x 1	+	4	*	x2	<=	180)
Oconstraint(model Cl	Ũ				-			·	100	í
econstraint (moder, or,							лZ	. –	40	
@constraint(model, NH3,			x1					>=	0)
<pre>@constraint(model, NH4Cl,</pre>							x2	>=	0)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
julia> optimize!(model)
```

```
julia> objective_value(model)
2300.0
```

```
julia> value(x1)
20.00000000000000004
```

```
julia> value(x2)
29.9999999999999996
```