
Julia basics



Using libraries

Using libraryname

For example:

Using JuMP

Using Cbc



Using libraries

Using libraryname

For example:

Using JuMP

Using Cbc



Output

Simplest form:

println(expression, expression, expression, ...)

Any of the expressions can be a constant string:

println("the value of myvariable is: ", myvariable)

C-style output:

Using Printf

@printf(format, ...)



Output

Simplest form:

println(expression, expression, expression, ...)

Any of the expressions can be a constant string:

println("the value of myvariable is: ", myvariable)

C-style output:

Using Printf

@printf(format, ...)



Output

Simplest form:

println(expression, expression, expression, ...)

Any of the expressions can be a constant string:

println("the value of myvariable is: ", myvariable)

C-style output:

Using Printf

@printf(format, ...)



Conditionals

if condition

...

elseif condition

...

else

...

end



Loops

for i = set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.



Loops

for i in set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.



Loops

for i ∈ set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.



Loops

for i ∈ set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.



Loops

for i ∈ set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.



Declaring model variables

With implicit indices
@variable(model, x[set, set, ...])

for example:
@variable(model, x[1:M, 1:N])

With explicit indices:
@variable(model, x[i in set, j in set, ...])

for example:
@variable(model, x[i in 1:M, j in 1:N])



Declaring model variables

With implicit indices
@variable(model, x[set, set, ...])

for example:
@variable(model, x[1:M, 1:N])

With explicit indices:
@variable(model, x[i in set, j in set, ...])

for example:
@variable(model, x[i in 1:M, j in 1:N])



Declaring model variables

With implicit indices
@variable(model, x[set, set, ...])

for example:
@variable(model, x[1:M, 1:N])

With explicit indices:
@variable(model, x[i in set, j in set, ...])

for example:
@variable(model, x[i in 1:M, j in 1:N])



Declaring model variables

With implicit indices
@variable(model, x[set, set, ...])

for example:
@variable(model, x[1:M, 1:N])

With explicit indices:
@variable(model, x[i in set, j in set, ...])

for example:
@variable(model, x[i in 1:M, j in 1:N])



Declaring model variables

When using explicit indices, we can add a condition:
@variable(model, x[i in set, j in set, ... ; condition])

for example:
@variable(model, x[i in 1:M, j in 1:N ; i < j])



Declaring model variables

When using explicit indices, we can add a condition:
@variable(model, x[i in set, j in set, ... ; condition])

for example:
@variable(model, x[i in 1:M, j in 1:N ; i < j])



Declaring model variables

Adding bounds directly with variable declaration:
@variable(model, lb <= x[...] <= ub)

Example: Lower bound:
@variable(model, x[i in 1:M] >= 0)

Example: Upper bound:
@variable(model, x[i in 1:M] <= 100)

Example: Lower and upper bounds:
@variable(model, 0 <= x[i in 1:M] <= 100)



Declaring model variables

Adding bounds directly with variable declaration:
@variable(model, lb <= x[...] <= ub)

Example: Lower bound:
@variable(model, x[i in 1:M] >= 0)

Example: Upper bound:
@variable(model, x[i in 1:M] <= 100)

Example: Lower and upper bounds:
@variable(model, 0 <= x[i in 1:M] <= 100)



Declaring model variables

Adding bounds directly with variable declaration:
@variable(model, lb <= x[...] <= ub)

Example: Lower bound:
@variable(model, x[i in 1:M] >= 0)

Example: Upper bound:
@variable(model, x[i in 1:M] <= 100)

Example: Lower and upper bounds:
@variable(model, 0 <= x[i in 1:M] <= 100)



Declaring model variables

Adding bounds directly with variable declaration:
@variable(model, lb <= x[...] <= ub)

Example: Lower bound:
@variable(model, x[i in 1:M] >= 0)

Example: Upper bound:
@variable(model, x[i in 1:M] <= 100)

Example: Lower and upper bounds:
@variable(model, 0 <= x[i in 1:M] <= 100)



Declaring model variables

Integer variables:
@variable(model, x[...], Int)

Binary (i.e. {0, 1}) variables:
@variable(model, x[...], Bin)

Example:
@variable(model, x[i in 1:M] >= 0, Int)

Note that
@variable(model, 0 <= x[i in 1:M] <= 1, Int)

is equivalent to
@variable(model, x[i in 1:M], Bin)



Declaring model variables

Integer variables:
@variable(model, x[...], Int)

Binary (i.e. {0, 1}) variables:
@variable(model, x[...], Bin)

Example:
@variable(model, x[i in 1:M] >= 0, Int)

Note that
@variable(model, 0 <= x[i in 1:M] <= 1, Int)

is equivalent to
@variable(model, x[i in 1:M], Bin)



Declaring model variables

Integer variables:
@variable(model, x[...], Int)

Binary (i.e. {0, 1}) variables:
@variable(model, x[...], Bin)

Example:
@variable(model, x[i in 1:M] >= 0, Int)

Note that
@variable(model, 0 <= x[i in 1:M] <= 1, Int)

is equivalent to
@variable(model, x[i in 1:M], Bin)



Declaring model variables

Integer variables:
@variable(model, x[...], Int)

Binary (i.e. {0, 1}) variables:
@variable(model, x[...], Bin)

Example:
@variable(model, x[i in 1:M] >= 0, Int)

Note that
@variable(model, 0 <= x[i in 1:M] <= 1, Int)

is equivalent to
@variable(model, x[i in 1:M], Bin)



Declaring model variables

Integer variables:
@variable(model, x[...], Int)

Binary (i.e. {0, 1}) variables:
@variable(model, x[...], Bin)

Example:
@variable(model, x[i in 1:M] >= 0, Int)

Note that
@variable(model, 0 <= x[i in 1:M] <= 1, Int)

is equivalent to
@variable(model, x[i in 1:M], Bin)



Declaring model constraints

With a for loop:
for i in set

@constraint(model, expression)

end

Example:
for i in 1:M

for j in 1:N

if i < j

@constraint(model, x[i, j] <= i + j)

end

end

end



Declaring model constraints

With a for loop:
for i in set

@constraint(model, expression)

end

Example:
for i in 1:M

for j in 1:N

if i < j

@constraint(model, x[i, j] <= i + j)

end

end

end



Declaring model constraints

All at once:
@constraint(model, [i in set, ...], expression)

Example:
@constraint(model, [i in 1:M, j in 1:N ; i < j], x[i, j] <= i + j)



Declaring model constraints

All at once:
@constraint(model, [i in set, ...], expression)

Example:
@constraint(model, [i in 1:M, j in 1:N ; i < j], x[i, j] <= i + j)



Custom sets

So far, all sets were a:b, but we can have arbitrary sets:

myset = Set([expression for i in set if condition])

Example:

myset = Set([2 * i for i in 1:10])



Custom sets

So far, all sets were a:b, but we can have arbitrary sets:

myset = Set([expression for i in set if condition])

Example:

myset = Set([2 * i for i in 1:10])

Set([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])



Custom sets

So far, all sets were a:b, but we can have arbitrary sets:

myset = Set([expression for i in set if condition])

Example:

myset = Set([2 * i for i in 1:10])

Set([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])



Custom sets

So far, all sets were a:b, but we can have arbitrary sets:

myset = Set([expression for i in set if condition])

Example:

myset = Set([2 * i for i in 1:10])

Set([18, 4, 14, 10, 20, 2, 16, 8, 6, 12])



Custom sets

We can also have arbitrary multidimensional sets, for example:

myset = Set([(i, j) for i in 1:3, j in 1:3 if j < i])

which we can use like this:

for (i, j) in myset

println(i, " ", j)

end

Output:
3 1

3 2

2 1



Custom sets

We can also have arbitrary multidimensional sets, for example:

myset = Set([(i, j) for i in 1:3, j in 1:3 if j < i])

which we can use like this:

for (i, j) in myset

println(i, " ", j)

end

Output:
3 1

3 2

2 1



Custom sets

We can also have arbitrary multidimensional sets, for example:

myset = Set([(i, j) for i in 1:3, j in 1:3 if j < i])

which we can use like this:

for (i, j) in myset

println(i, " ", j)

end

Output:
3 1

3 2

2 1



Custom sets

The point of using Set(...)

is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end



Custom sets

The point of using Set(...) is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end



Custom sets

The point of using Set(...) is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end



Custom sets

The point of using Set(...) is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end



Custom sets

The point of using Set(...) is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end



Read the documentation!

http://www.juliaopt.org/JuMP.jl/v0.19.0/

http://www.juliaopt.org/JuMP.jl/v0.19.0/

