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Output

Simplest form:

println(expression, expression, expression, ...)

Any of the expressions can be a constant string:

println("the value of myvariable is: ", myvariable)

C-style output:

Using Printf

@printf(format, ...)
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Conditionals

if condition

...

elseif condition

...

else

...

end



Loops

for i = set

...

end

Typically, set would be a:b, yielding {a, a+ 1, . . . , b− 1, b}.

For example 1:5 yields {1, 2, 3, 4, 5}.
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Declaring model variables

With implicit indices
@variable(model, x[set, set, ...])
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Declaring model variables

When using explicit indices, we can add a condition:
@variable(model, x[i in set, j in set, ... ; condition])

for example:
@variable(model, x[i in 1:M, j in 1:N ; i < j])
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Integer variables:
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Declaring model constraints

With a for loop:
for i in set

@constraint(model, expression)

end

Example:
for i in 1:M

for j in 1:N

if i < j

@constraint(model, x[i, j] <= i + j)

end

end

end
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Custom sets

So far, all sets were a:b, but we can have arbitrary sets:

myset = Set([expression for i in set if condition])

Example:

myset = Set([2 * i for i in 1:10])

Set([18, 4, 14, 10, 20, 2, 16, 8, 6, 12])



Custom sets

We can also have arbitrary multidimensional sets, for example:

myset = Set([(i, j) for i in 1:3, j in 1:3 if j < i])

which we can use like this:

for (i, j) in myset

println(i, " ", j)

end

Output:
3 1

3 2

2 1
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Custom sets

The point of using Set(...)

is that we can do

I union(set1, set2, ...)

I intersect(set1, set2, ...)

I setdiff(set1, set2, ...)

and test for inclusion:
if value in set

...

end
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Read the documentation!

http://www.juliaopt.org/JuMP.jl/v0.19.0/

http://www.juliaopt.org/JuMP.jl/v0.19.0/

