
Math 115 Spring 2015: Assignment 2

Solutions

1. Determine whether or not the following sets are subspaces in their respective vector spaces. If so, prove it

using the definition of subspaces. If not, provide a counterexample where a rule of subspaces is violated.

(a) [2 marks] S = {~x ∈ R2 | x1 + 2x2 = 0 and x1 − 3x2 = 1}.

Solution: S is not a subspace. For example,

[
2
5

− 1
5

]
∈ S, but 0.

[
2
5

− 1
5

]
=

[
0

0

]
/∈ S because

0 − 3.0 = 0 6= 1. (Note that

[
2
5

− 1
5

]
is the only vector that satisfies both equations of S, i.e. S ={[

2
5

− 1
5

]}
).

(b) [2 marks] T = {~x ∈ R3 | ~x · ~v ≥ 0}, where ~v =

 2

2

−1

.

Solution: T is not a subspace. Let ~x =

 2

2

−1

. The product ~x.~v = 2.2 + 2.2 + (−1).(−1) = 9 ≥ 0 so

~x ∈ T . However, ((−1).~x).~v = (−2).2 + (−2).2 + (1).(−1) = −9 6≥ 0, so ((−1).~x) /∈ T . Therefore, the

set is not closed under scalar multiplication.

2. Let ~u =

 1

2

−1

, ~v =

 2

2

1

, ~w =

 −3

−2

−3

, and ~x =

 0

2

−3

.

(a) [3 marks] Show that {~u,~v, ~w, ~x} is linearly dependent.

Solution: We solve the system p~u + q~v + r ~w + s~x = ~0, i.e.
p + 2q − 3r = 0

2p + 2q − 2r + 2s = 0

−p + q − 3r − 3s = 0

→


p = −2q + 3r

−4q + 6r + 2q − 2r + 2s = 0

2q − 3r + q − 3r − 3s = 0

→


p = −2q + 3r

−2q + 4r + 2s = 0

3q − 6r − 3s = 0

→


p = −2q + 3r

s = q − 2r

3q − 6r − 3q + 6r = 0

→


p = −2q + 3r

s = q − 2r

0 = 0.

If we pick any value for q and r, and then compute p and s according to the above equation, we obtain

a solution to the system. Note that we do not pick q = r = 0, because then we also obtain p = s = 0,

which does not provide the “not all zero” solution necessary to prove linear dependence.

For example, we can choose q = 0, r = −1, yielding p = −3, s = 2, and verify that

−3~u− ~w + 2~x = 0.
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Alternatively, one could notice e.g. that ~w = ~u − 2~v (thus ~w ∈ span{~u,~v}), or that ~x = 2~u − ~v (thus

~x ∈ span{~u,~v}). Then, the theorem from the course implies linear dependence.

(b) [4 marks] Find a basis for span{~u,~v, ~w, ~x}, i.e. a set of vectors {~v1, . . . , ~vk} such that (a) {~v1, . . . , ~vk} is

linearly independent, and (b) span{~v1, . . . , ~vk} = span{~u,~v, ~w, ~x}. (Note: k will be smaller than 4, so it

could be 1, 2 or 3.)

Solution: We proved above that −3~u− ~w+2~x = 0. Therefore ~w = −3~u+0~v+2~x, thus ~w ∈ span{~u,~v, ~x},
so span{~u,~v, ~x} = span{~u,~v, ~w, ~x}. Let us check that {~u,~v, ~x} is linearly independent by solving the

system p~u + q~v + s~x = ~0, i.e.
p + 2q = 0

2p + 2q + 2s = 0

−p + q − 3s = 0

→


p = −2q

−4q + 2q + 2s = 0

2q + q − 3s = 0

→


p = −2q

s = q

0 = 0

Again, for any value of q, we find a solution to the system. In particular, if q = −1, then s = −1, p = 2,

showing that 2~u− ~v − ~x = ~0, i.e. the system is linearly dependent. Rearranging the previous equation,

we see that ~x = 2~u− ~v, so ~x ∈ span{~u,~v}, implying that span{~u,~v} = span{~u,~v, ~x}.
Let us now check that {~u,~v} is linearly independent. The system p~u + q~v = ~0, i.e.

p + 2q = 0

2p + 2q = 0

−p + q = 0

→


p = −2q

p = q

p = q

has a solution only if −2q = q. This happens only if p = q = 0. Therefore, {~u,~v} is linearly independent.

To summarize, we showed that so span{~u,~v} = span{~u,~v, ~w, ~x} and {~u,~v} is linearly independent. Thus,

{~u,~v} is a basis of span{~u,~v, ~w, ~x}.

3. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is

false.

(a) [3 marks] Let ~u,~v, ~w ∈ Rn. If {~u,~v, ~w} is linearly dependent, then ~u ∈ span{~v, ~w}.

Solution: False. For example, take ~u =

[
1

0

]
, ~v =

[
0

1

]
and ~w =

[
0

2

]
. Clearly, 0~u + ~v − 1

2 ~w = ~0,

so they are linearly dependent. But ~u /∈ span{~v, ~w}.
Note: If {~u,~v, ~w} are linearly dependent, then we know that at least one of the following statements is

true:

(1) ~u ∈ span{~v, ~w}.
(2) ~v ∈ span{~u, ~w}.
(3) ~w ∈ span{~u,~v}.

However, they are not necessarily all true. In the above example, (2) and (3) hold true, but (1) does not.

As a consequence, span{~u,~v} = span{~u, ~w} = span{~u,~v, ~w}, but span{~v, ~w} 6= span{~u,~v, ~w}. Indeed

span{~v, ~w} is the line

{
~x ∈ R2 | ~x = t

[
0

1

]
, t ∈ R

}
, while span{~u,~v, ~w} is the entire plane R2.

(b) [3 marks] Let ~u,~v ∈ Rn be two nonzero vectors (i.e. ~u 6= ~0 and ~v 6= ~0). If ~u and ~v are orthogonal, then

{~u,~v} is linearly independent.
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Solution: True. We prove that if ~u 6= ~0 and ~v 6= ~0 were such that {~u,~v} is linearly dependent, then ~u

and ~v could not be orthogonal.

Assume {~u,~v} is linearly dependent. Then, there exist s, t not both zero such that s~u + t~v = ~0.

Furthermore, we know that both s 6= 0 and t 6= 0. Indeed, if s = 0 and t 6= 0, then t~v = ~0 which

contradicts ~v 6= ~0, and if s 6= 0 and t = 0, then s~u = ~0 which contradicts ~u 6= ~0. Therefore, we can write

~u = − t
s~v. So the product ~u.~v = − t

s~v.~v = − t
s ||~v||

2 6= 0, showing that the vectors are not orthogonal.

(c) [3 marks] Let ~u,~v, ~w ∈ Rn be three nonzero vectors. If (a) ~u is orthogonal to ~v, and (b) ~u is orthogonal

to ~w, then {~u,~v, ~w} is linearly independent.

Solution: False. Take any ~u orthogonal to ~v and ~w = ~v. Then ~u is also orthogonal to ~w, but {~u,~v, ~w}
is linearly dependent.

For example, let ~u =

[
1

0

]
and ~v = ~w =

[
0

1

]
. Then ~u.~v = ~u.~w = 0, but 0

[
1

0

]
+1

[
0

1

]
−1

[
0

1

]
=[

0

0

]
, so {~u,~v, ~w} is linearly dependent.
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