LECTURE 3



COMPILATION



A compiler:

reads source code,
forms chunks of
» data (constants, global variables)
s executable machine code (functions)
associates a symbol to each chunk (variable or function name)

writes all into an “object” (“. 0”) file (format: ELF, COFF, Mach-O)

The compiler leaves blank all references to symbols
(incl. external symbols like global variables and global functions)



#include <stdio.h>

int the_number

int main()

{

_1'

scanf("%d", &the_number) ;
return 0;

OBJECT GLOBAL DEFAULT

0000000000000000
0: 48 83 ec
4: be 00 00
9: bf 00 00
e: 31 cO
10: e8 00 00
15: 31 cO
17: 48 83 c4

1b:

c3

the_number

<main>:

08 sub

00 00 mov

00 00 mov
X0TY

00 00 call
X0

08 add
ret

rsp,0x8
esi,0x0
edi, 0x0
eax,eax
15 <main+@x15>
eax,eax
rsp,0x8

Example



A linker reads “object” files and writes an executable file.

e it assigns a position in memory to every chunk of code and data
e it setsthe value of the corresponding symbol to this position
e it resolves all references to symbols:

replaces all references with the numberic value of the corresponding position in memory



Example

#include <stdio.h>
int the_number = -1;
int main()

{

scanf("%d", &the_number);
return 0;

54: 000000000040400cC 4 OBJECT GLOBAL DEFAULT 24 the_number
63: 0000000000401040 28 FUNC GLOBAL DEFAULT 14 main

0000000000401040 <main>:

401040 48 83 ec 08 sub rsp,0x8

401044 : be 0c 40 40 00 mov esi,0x40400c

401049: bf 10 20 40 00 mov edi, 0x402010

40104e:. 31 cO X0r eax, eax

401050 e8 db ff ff ff call 401030 <__1s0c99_scanf@plt>
401055 31 cO X0Y eax,eax

401057 : 48 83 c4 08 add rsp,0x8

40105b: c3 ret



e Static linking is performed in order to prepare an executable (. exe, ...) file.
e Dynamic linking is performed every time the executable is run
s Object files built to be dynamically linked are called

o shared objects (. so, Linux, MacOS), or

o dynamically-linked libraries (.d11, Windows)
» Typically used for
o System libraries

o Plugins



e Separate linking simplifies compilations
(allows the compiler to write code using functions and variables it has not seen yet)
e |t allows us to break down our code into multiple files...
s that can be compiled separately
e |t allows using code written and compiled by other people
= saves time
n |ets us use closed-source software
e Dynamic linking allows us to use system libraries without shipping them

e |t reduces the size of executables

e |t helpsin masking some system incompatibilities

(e.g. run the same . exe on Windows 10 and 11)

e |t allows updating system libraries separately



e The compiler does not know the code inside external object files

= it cannot check for mistakes based on that knowledge

= it cannot optimize code based on that knowledge (at least for dynamic linking)
e Dynamically-linked libraries add complexity

(separate installation, incompatible versions, etc.)



Libraries are collections of functions (and data) that can be used by different executables

Examples:
o : read/write jpeg files
o : cryptography
° : fast vector and matrix operations

e [ :cross-platform GUI toolkit

Most languages have a

e Distinct from the language itself, but usually necessary in any program
e The Clanguage provides no functions.
(All basic utilities (strlen, printf, exit) come from the standard library.)

e [tisnormally dynamically linked



int main()

{
int r = 0;
for (int 1 = 0; 1 < 1000000;
Y =1 + 2;
return r;
}

0000000000401020 <main>:
401020 b8 80 84 l1le 00
401025 c3

1++)

mov
ret

eax,0x1e8480

# <-- 2,000,000



“Optimal” = “best”

“Optimizing” = “going towards the best possible result”

Do not say: “I| made my code more optimal”
Do say: “l optimized my code some more”
or

“I made my code faster”



OPERATING SYSTEMS



The operating system (OS) manages the computer and provides services to applications.

Components:

e The kernel handles:
» most of the boot process (what happens upon power on)
= memory allocation and sharing
= input/output devices, through “drivers” (often dynamically loaded)

= application coexistence and cooperation

e Optionally:
o for some languages (C, C++, .NET, Swift, ...)
= Some additional common
» User interface (Ul): command-line (CLI), graphical (GUI)

» Some tools: CLI utilities, compilers, settings/configuration apps



Popular OSs:

Windows
MacOS, iOS (base OS: Darwin, kernel: XNU)
Android, SteamOS (kernel: Linux)

Other current OSs:

Debian, Ubuntu, Suse, Fedora, Arch, RHEL, AL2 (base OS: GNU, kernel: Linux)
FreeBSD, OPNsense, TrueNAS, pfSense (base OS & kernel: FreeBSD)
OpenBSD

All the above except Windows are descendants from “Unix”



FILE *f = fopen("my_file.txt", "r");

On my system:
e fopen() is part of the
e fopen() calls Unix-specific open(), also in the
e open() is awrapper for the open system call in the Linux kernel

# open("my_file.txt", O_RDONLY);
mov rdi, 0x402010 # pointer to "my_file.txt"

mov rsi, Ox0 # O_RDONLY == 0
mov rax, 2 # open 1s syscall #2
syscall

e the Linux kernel uses its filesystem and SSD drivers to open the file
e it returns a file descriptor (int)

e fopen() allocates a structure with buffers and the file descriptor, returns it



t
t
t

ne processor only does elementary operations (move 64-bit to/from memory)

ne kernel implements basic functionality (managing devices, reading data from a file)

ne provides more, OS-independent functionality (buffering, parsing data)

other may allow even more (e.g. decompressing a video file)



MEMORY (AGAIN)



Recall this example:

#include <stdio.h>
int the_number = -1;
int main()

{

scanf("%d", &the_number);
return 0;

54: 000000000040400cC 4 OBJECT GLOBAL DEFAULT 24 the_number
63: 0000000000401040 28 FUNC GLOBAL DEFAULT 14 main

0000000000401040 <main>:

401040 48 83 ec 08 sub rsp,0x8

401044 : be 0c 40 40 00 mov esi,0x40400c

401049: bf 10 20 40 00 mov edi, 0x402010

40104e:. 31 cO X0r eax, eax

401050 e8 db ff ff ff call 401030 <__1s0c99_scanf@plt>
401055 31 cO X0Y eax,eax

401057 : 48 83 c4 08 add rsp,0x8

40105b: c3 ret



e every process sees memory as if it was alone

e every time a process accesses memory, the hardware translates the virtual address into a
hardware address

e the translation uses a page table managed by the kernel



Page table (managed by the kernel):

page virtualaddress hardware address

0 0 -4095 65536 - 69631
1 4096 - 8191 20480 - 24575
2 8192 - 12287 4096 - 8191
# x86_64 # AArch64
mov eax, DWORD PTR [4100] ldr w@, [4100]

e the processor looks up virtual address 4100 in the page table

e it finds page 1, base 4096, plus offset 4

e page 1 has hardware address 20480

e the memory access is at hardware address 20480 + 4 = 20484



e the page table itself is in memory!

e at aspecific hardware address

e various techniques to make page lookup faster (it is a tree, with a cache)



the kernel finds free hardware addresses (unused by any process)
for the virtual addresses:

» either the process request specific virtual addresses

» or the kernel finds free virtual addresses (unused by this process)
the kernel adds suitable entries in the page table

the kernel returns the virtual address to the process



cons:

slow!

memory sharing between processes must be (initially) mediated by the kernel

Pros:

simplifies memory management for the process

enables process separation (a process cannot snoop on or crash another)
enables fast move for large chunks of memory (just update the page table)
allows fast input/output on devices
(non-memory devices can be mapped to virtual addresses)
allows extending memory:

» using storage devices (“swap”)

= UsSing compression

= using overcommit



void fl(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3(),;
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

N\

f1(): allocate 2 x uilnt64_t



void f1l(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3();
3(),; }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b

f1(): call f2



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b R

f2(): allocate 1 x ulnt64_t



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b R <

f2(): call f3()



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b R ¢ R

f3(): return (to f2())



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b R <

f2(): return (to f1())



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b

f1(): call f3()



void f1l(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b R

f3(): return (to f1())



void f1l(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3();
3(),; }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80

a b

f1(): return



void f1l(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); f3();
3(),; }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80

Back to i1nitial state






x86_64: rsp (by convention - rsp is a general register)
AArch64: sp (mandatorily - sp is a special register)

In both cases, the stack actually grows downwards
Default stack size on Linux: 8 MB

» theoretical max recursion depth: 1,000,000



All the memory that is not on stack is sometimes called the “heap”.



TOOLS



e Windows Subsystem for Linux
e Basics
= cd, s, less
= TAB completion
= command-line parameters, -h
= man
e package management
s Debian/Ubuntu: apt-get
= Fedora/Suse: dnf
= MacOS: brew

= Windows: winget


https://learn.microsoft.com/en-us/windows/wsl/install




