
LECTURE 15

1

CORRECTNESS (CONTINUED)

2

We are here
Part 1: How computers works

Boolean logic, integers

Instructions

Memory

Part 2: Software development

Compiling, make

ABIs & APIs

git

Part 3: Correctness

Specifications

Documentation, testing

Static & dynamic analysis, debugging TODAY

Part 4: Performance

CPU pipelines, caches

Data structures

Parallel computation

←

3

DEBUGGING TECHIQUES

4

Instrumentation
The basic approach to debugging is:

 Check that what we think is true is actually true.

Narrow down the precise point at which execution deviates from our assumptions

We can use

assertions: assert / assert()

debugging messages: print() / printf()

machine-readable output

5

Crash instrumentation example
void perform_actions(struct state *s)
{

action_a(s);
action_b(s);
action_c(s);
action_d(s);
action_e(s);

}

void perform_actions(struct state *s)
{

printf("Action A...\n");
action_a(s);
printf("Action B...\n");
action_b(s);
printf("Action C...\n");
action_c(s);
printf("Action D...\n");
action_d(s);
printf("Action E...\n");
action_e(s);
printf("Actions done.\n");

}

Action A...
Action B...
Action C...
Segmentation fault

 crash in action_c() assuming no time-traveling UB.→
6

Machine-readable output example
def matrix_inverse(mtx):

...
return result

def matrix_inverse(mtx):
...

error_matrix = mtx * result - matrix_identity()
matrix_write(mtx, "mtx.m")
matrix_write(result, "result.m")
assert matrix_norm(error_matrix) < 1e-5

return result

7

How to handle large test cases?
assume our matrix_inverse() code has a bug

we find a wrong result for a specific 2000x2000 matrix

how do we proceed?

we would like to instrument matrix_inverse() by printing the matrix at each step,

but a 2000x2000 matrix is too large to visualize

8

Testcase reduction
Input: A ∈ Rn×n

Step 1: construct by selecting an arbitrary square submatrix of B ∈ Rm×m A

Step 2: test matrix_inverse() on B

Step 3: if matrix_inverse() fails again, then B A := B
Step 4: go back to Step 1

Example approach:

at first we can try removing a random half of the rows and columns of A

if it fails repeatedly, we try to remove fewer rows and columns of A

if it fails again, we remove a single row and column of A

This process can be automated!

9

Code bisection
void perform_actions(struct state *s)
{

action_000(s);
action_001(s);
action_002(s);
. . .
action_998(s);
action_999(s);

}

void perform_actions(struct state *s)
{

printf("First action...\n");
action_000(s);
action_001(s);
action_002(s);
. . .
printf("Action 500...\n");
action_500(s);
. . .
action_998(s);
action_999(s);
printf("Actions done.\n");

}

First action...
Action 500...
Segmentation fault

 crash between 500 and 999 (assuming no time-traveling UB).→
10

void perform_actions(struct state *s)
{

printf("First action...\n");
action_000(s);
. . .
printf("Action 500...\n");
action_500(s);
. . .
printf("Action 750...\n");
action_750(s);
. . .
action_999(s);
printf("Actions done.\n");

}

First action...
Action 500...
Action 750...
Segmentation fault

 crash between 750 and 999.→

11

void perform_actions(struct state *s)
{

printf("First action...\n");
action_000(s);
. . .
printf("Action 500...\n");
action_500(s);
. . .
printf("Action 750...\n");
action_750(s);
. . .
printf("Action 875...\n");
action_875(s);
. . .
action_999(s);
printf("Actions done.\n");

}

First action...
Action 500...
Action 750...
Segmentation fault

 crash between 750 and 875.→

12

void perform_actions(struct state *s)
{

printf("First action...\n");
action_000(s);
. . .
printf("Action 500...\n");
action_500(s);
. . .
printf("Action 750...\n");
action_750(s);
. . .
printf("Action 812...\n");
action_812(s);
. . .
printf("Action 875...\n");
action_875(s);
. . .
action_999(s);
printf("Actions done.\n");

}

First action...
Action 500...
Action 750...
Action 812...
Segmentation fault

 crash between 812 and 875.→

13

Version bisection
git log --oneline

9e9e6fc (HEAD -> main, origin/main) Added perf version check.

ff3c21b Changed branch mispredict ratio displayed.

fd49f78 Silently ignore branch events.

85afe03 Support new perf-script brstack format with added spaces.

77f8759 Made perf script output parsing more lenient.

637f374 Version bump.

47b578b Fixed erroneous use of atime, should have been mtime.

1dadd0f Moved objdump cache to /tmp.

60a534a Added caching of objdump output.

6f3c377 Some debugging code.

b2daa9b Updated version.

14

Version bisection
git log --oneline

9e9e6fc (HEAD -> main, origin/main) Added perf version check.

ff3c21b Changed branch mispredict ratio displayed.

fd49f78 Silently ignore branch events.

85afe03 Support new perf-script brstack format with added spaces.

77f8759 Made perf script output parsing more lenient.

637f374 Version bump.

47b578b Fixed erroneous use of atime, should have been mtime.

1dadd0f Moved objdump cache to /tmp.

60a534a Added caching of objdump output.

6f3c377 Some debugging code.

b2daa9b Updated version.

← test this

← test this

← test this

15

DEBUGGERS

16

A debugger is a tool that allows us to run our code step-by-step (e.g. line by line)

Between each step, we can examine

program output

program state (i.e. variables)

Debuggers for interpreted languages are language-specific

Debuggers for compiled languages work at the assembly level

17

