LECTURE 15



CORRECTNESS (CONTINUED)



e Part 1: How computers works e Part 3: Correctness

= Boolean logic, integers = Specifications

= |nstructions = Documentation, testing

= Memory = Static & dynamic analysis, debugging <— TODAY
e Part 2: Software development e Part 4: Performance

= Compiling, make = CPU pipelines, caches

= ABIls & APIs = Data structures

n git » Parallel computation



DEBUGGING TECHIQUES



e The basic approach to debugging is:

Check that what we think is true is actually true.
e Narrow down the precise point at which execution deviates from our assumptions
e \We can use

m gssertions: assert/ assert()
s debugging messages: print() / printf()

= machine-readable output



void perform_actions(struct state *s)

{
action_a(s);
action_b(s);
action_c(s);
action_d(s);
action_e(s);
}

void perform_actions(struct state *s)

{
printf("Action A...\n");
action_a(s);
printf("Action B...\n");
action_b(s);
printf("Action C...\n");
action_c(s);
printf("Action D...\n");
action_d(s);
printf("Action E...\n");
action_e(s);
printf("Actions done.\n");

}

Action A...

Action B...

Action C...

Segmentation fault

—r crashinaction_c() assuming no time-traveling UB.



def matrix_inverse(mtx):

return result

def matrix_inverse(mtx):

error_matrix = mtx * result - matrix_identity()
matrix_write(mtx, "mtx.m")

matrix write(result, "result.m")

assert matrix_norm(error_matrix) < le-5

return result



assume our matrix_inverse() code hasabug
we find a wrong result for a specific 2000x2000 matrix

how do we proceed?

we would like to instrument matrix_inverse() by printingthe matrix at each step,

but a 2000x2000 matrix is too large to visualize



Input: A € R"*"
Step 1: construct B € R"”*™ by selecting an arbitrary square submatrix of A

Step 2: test matrix_inverse() on B

Step 3:if matrix_inverse(B) failsagain,then A := B
Step 4: go back to Step 1

Example approach:

at first we can try removing a random half of the rows and columns of A

if it fails repeatedly, we try to remove fewer rows and columns of A

if it fails again, we remove a single row and column of A

This process can be automated!



void perform_actions(struct state *s)

{
action_000(s) ;
action_001(s) ;
action_002(s) ;
action_998(s) ;
action_999(s) ;
}

void perform_actions(struct state *s)
{
printf("First action...\n");
action_000(s) ;
action_001(s);
action_002(s) ;

printf("Action 500...\n");
action_500(s) ;

action_998(s) ;
action_999(s);
printf("Actions done.\n");

First action...
Action 500. ..
Segmentation fault

— crash between 500 and 999 (assuming no time-traveling UB).



void perform_actions(struct state *s)

{

printf("First action...\n");
action_000(s)

printf("Action 500...\n");
action_500(s) ;

printf("Action 750@...\n");
action_750(s);

action_999(s);
printf("Actions done.\n");

First action...
Action 500. ..
Action 750. ..
Segmentation fault

—> crash between 750 and 999.



void perform_actions(struct state *s)

{

printf("First action...\n");
action_000(s) ;

printf("Action 500...\n");
action_500(s) ;

printf("Action 750...\n");
action_750(s) ;

printf("Action 875...\n");
action_875(s);

action_999(s);
printf("Actions done.\n");

First action...
Action 500. ..
Action 750...
Segmentation fault

— crash between 750 and 875.



void perform_actions(struct state *s)

{

printf("First action...\n");

action_000(s) ;

printf("Action 500..

action_500(s) ;

printf("Action 750..

action_750(s);

printf("Action 812...

action_812(s);

printf("Action 875..

action_875(s);

action_999(s) ;

printf("Actions done.

First action...
Action 500...
Action 750. ..
Action 812...
Segmentation fault

An");

An");

\n");

An");

\n");

— crash between 812 and 875.



git log --oneline

9e9ebfC
ff3c21b
fd49f78
85afed3
7718759
637f374
47b578b
1daddof
60a534a
61f3c377
b2daa9b

(HEAD -> main, origin/main) Added pexrf version check.
Changed branch mispredict ratio displayed.

Silently ignore branch events.

Support new perf-script brstack format with added spaces.
Made pexrf script output parsing more lenient.

Version bump.

Fixed erroneous use of atime, should have been mtime.
Moved objdump cache to /tmp.

Added caching of objdump output.

Some debugging code.

Updated version.



git log --oneline

9e9ebfcC
ff3c21b
Td49178
85afed3
7718759
6371374

47b578b
1daddof
60a534a
6f3c377

b2daa9b

(HEAD -> main, origin/main) Added perf version check. < test this
Changed branch mispredict ratio displayed.

Silently ignore branch events.

Support new perf-script brstack format with added spaces.

Made perf script output parsing more lenient.

Version bump. < test this

Fixed erroneous use of atime, should have been mtime.
Moved objdump cache to /tmp.

Added caching of objdump output.

Some debugging code.

Updated version. < test this



DEBUGGERS



A debuggeris a tool that allows us to run our code step-by-step (e.g. line by line)
Between each step, we can examine

= program

= program (i.e. variables)

Debuggers for interpreted languages are language-specific

Debuggers for compiled languages work at the assembly level






