LECTURE 16

PERFORMANCE

e Part 1: How computers works e Part 3: Correctness

= Boolean logic, integers = Specifications

= |nstructions = Documentation, testing

= Memory = Static & dynamic analysis, debugging
e Part 2: Software development e Part 4: Performance <— TODAY

= Compiling, make = CPU pipelines, caches

= ABIls & APIs = Data structures

n git » Parallel computation

We want computers to perform required actions while minimizing their use of resources:

e Time
e Power use (mobile, servers)

e Network use (mobile)

e Memory use (peak RAM usage)

e Storage (solid state drive / hard disk drive)

We care about those resources in proportion to their cost (financial, emotional, etc.)

High level 1. Pick a good algorithm

e specifically, an algorithm with low computational complexity:
O(log(n)) better than O(n?) better than O(n®) better than O(2")
e we can hope for great improvements, 100 X faster, 1000 X, etc.

! e — first thing to try!

2. Pick an algorithm that is fast on the computers you use and implement it well
e this course!

e smallerimprovements: from a few percent to 90 X faster
Low level

3. Translate the implementation into efficient instructions (compilers do that well)

e Algorithm A has com

e Algorithm B has com

Let us compare two algorithms:

olexity O(n?)

olexity O(n log(n))

EEEEEEE

Algorithm A Algorithm B

O(n®) O(nlog(n))

gorit

gorit

Specifically,

1m A performs 2n° + 16 operations

"m B performs 16n log(n) + 64 operations

2.5e+08

2e+06

1.58+06

1e+06 [

S00000

0 200 400 a00 800 1000

Algorithm A Algorithm B
2n* + 16 16nlog(n) + 64

a000

5000

4000

2000

2000

1000

Algorithm A Algorithm B

2n’ + 16 16nlog(n) + 64

500

400

300

200

100

Algorithm A Algorithm B

2n* + 16 16nlog(n) + 64

10

Which algorithm do we choose?

Assume that

e Algorithm Ais insertion sort

e Algorithm B is merge sort

30 4 7 24 12 26 16 14 28 31

def merge_sort(a):

single-element 1ist
if (len(a) <= 1):
return [a]

two-elements 1ist
if (len(a) == 2):
if a[0] <= a[l]:
return [a[0], a[l]]
else:
return [a[l], a[0]]

split 1list, sort each part
pivot = len(a) // 2

partl = merge_sort(a[:pivot])
part2 = merge_sort(a[pivot:])

merge parts
r =[]
11 =0
12 =0

while il < len(partl) or i2 < len(part2):
if (not il == len(partl)) and (i2 == len(part2) or partl[il] < part2[i2]):
r.append(partl[il])

11 = 11 + 1

else:
r.append(part2[i2])
12 = 12 + 1

return r

def merge_sort(a):

single-element 1ist
if (len(a) <= 28):
return insertion_sort(a)

split 1ist, sort each part
pivot = len(a) // 2

partl = merge_sort(al[:pivot])
part2 = merge_sort(a[pivot:])

merge parts
r = []
i1 =0
12 = 0

while il < len(partl) or i2 < len(part2):
if (not il == len(partl)) and (i2 == len(part2) or partl[il] < part2[i2]):
r.append(partl[il])

11 = 11 + 1

else:
r.append(part2[i2])
12 = 12 + 1

return r

— we should pick the right algorithm for each value of n:

a000

5000

4000

3000

2000

1000

a 10 20 a0 40 &0

But here, we can do even better: we can combine algorithms

500

&000

400 F a000

4000 |
200 r

2000 F

200

2000 F

100
1000 [

%

This is how sort algorithms are implemented in practice

CPU PIPELINES

48 2b 06
48 Of af 06
48 0f af 02

Instruction decoding:

sub rax, QWORD PTR [xsi]
imul rax, QWORD PTR [xsi]
imul rax, QWORD PTR [xdx]

From 48 @f af 06, the CPU needs to understand:

e that it must perform a multiplication (as opposed to, say, a subtraction)

o t
o t

nat one term is the value of a 64-bit register, rax

nat the other term comes from memory: the 64-bit value pointerto by rsi

48 0f af 06

What happens after instruction decoding?

imul rax, QWORD PTR [xsi]

the CPU has Boolean circuitry to compute multiplications

it must ensure that one of the two inputs of the multiplier is rax

the CPU has Boolean circuitry to access memory

it must ensure that the input of the memory circuitry is rsi

it sets the second input of the multiplier to the output of the memory circuitry

it stores the output of the multiplier back to rax

It is no longer possible to do all this in a single cycle
(e.g. at 4 GHz, i.e. 4 billion cycles per second, so in 0.25 ns)

Imagine that it takes:

e one cycle to decode an instruction

e one cycle to fetch data from memory

e one cycle to perform arithmetic

sub rax, [rdi]

imul rbx, [rsi]

decoder

memory

arithmetic

sub rax, [rdi]

decoder

imul rbx, [rsl1] decode "imul"

memory

arithmetic

sub rax,

[rdi]

decoder

memory

imul rbx,

[rs1]

fetch [rsi]

arithmetic

sub rax, [rdi]
decoder -
memory -
arithmetic imul rbx, [rsi] compute rbx * [rsi]

decoder sub rax, [rdi] decode "sub"
memory -
arithmetic -

imul rbx, [rsi]

decoder

memory

sub rax,

[rdi]

fetch [rdi]

arithmetic

imul rbx,

[rsi]

decoder

memory

arithmetic

sub rax, [rdi] compute rax - [rdi]

imul rbx, [rsi]

decoder

memory

arithmetic

sub rax, [rdi]

imul rbx, [rsi]

Each instruction takes 3 cycles

However, in this model,

e while the memory circuitry is busy fetching QWORD PTR [rsi], the multiplierisidle
e while the multiplier computes the result, the memory isidle

e during instruction decoding, everything else is idle

We can exploit this!

sub rax, [rdi]

imul rbx, [rsi]

add rcx, [rbp]

decoder - (idle)
memory - (1dle)
arithmetic - (idle)

sub rax, [rdi]

imul rbx, [rsi]

add rcx, [rbp]

decoder - (idle)
memory - (1dle)
arithmetic - (idle)

sub rax, [rdi]

imul rbx, [rsi]

decoder add rcx, [rbp] decode "add"

memory - (1dle)

arithmetic - (idle)

sub rax, [rdi]
decoder imul rbx, [rsi] decode "imul"
memory add rcx, [rbp] fetch [rbp]
arithmetic - (idle)

decoder

sub rax, [rdi] decode "sub"

memory

imul rbx, [rsi] fetch [rsi]

arithmetic

add rcx, [rbp] compute rcx + [rbp] _

decoder - (idle)
memory sub rax, [rdi] fetch [rdi]
arithmetic imul rbx, [rsi] compute rbx + [rsi] _

add rcx, [rbp]

decoder - (idle)
memory - (1dle)
arithmetic sub rax, [rdi] compute rax + [rdi] _

imul rbx, [rsi]

add rcx, [rbp]

decoder - (idle)
memory - (1dle)
arithmetic - (idle)

sub rax, [rdi]

imul rbx, [rsi]

add rcx, [rbp]

o | atency:

= Executing each instruction still takes 3 cycles!

e Throughput:

= But on average, we execute up to 1 instruction per cycle.

mul rcx, [rdX]

add rdx, [rsi]

decoder - (idle)
memory - (1dle)
arithmetic - (idle)

mul rcx, [rdx]

add rdx, [rsi]

decoder - (idle)
memory - (1dle)
arithmetic - (idle)

mul rcx, [rdx]
decoder add rax, [rsi] decode "add"
memory - (1dle)
arithmetic - (idle)

decoder mul rcx, [rdx] decode "mul"
memory add rdx, [rsi] fetch [rsi]
arithmetic - (idle)

decoder -

(1dle)

memory mul rcx,

[TrdX]

(rdx not ready)

arithmetic add rdx,

[rsi]

add [rsi] to rdx

decoder - (idle)
memory mul rcx, [rdx] fetch [rdx]
arithmetic - (idle)

add rdx, [rsi]

decoder - (idle)

memory - (1dle)

arithmetic mul rcx, [rdx] compute rcx * [rdx] _
add rdx, [rsi]

decoder - (idle)

memory - (1dle)

arithmetic - (idle)

mul rcx, [rdx]

add rdx, [rsi]

if (a < b) { cmp rdi, rsi

YYY jge L1
} YYY
L7117 L1:
ll7
YYY
jge .L1
cmp rdi, rsi
decoder - (idle)
memory - (1dle)

arithmetic - (idle)

if (a < b) {
YYY

}
L7117

cmp rdi,
jge L1
YYY
.L1:
ll7

rsi

YYY

jge .L1
decoder cmp rdi, rsi decode "cmp"
memory - (1dle)
arithmetic - (idle)

if (a < b) {

cmp rdi, rsi
YYY jge L1
} YYY
177 L1:
Ll7
YYY
decoder jge .L1 decode "jge"

memory cmp rdi, rsi (still idle)

arithmetic - (idle)

if (a < b) { cmp rdi, rsi
YYY

jge L1
} YYY
L7117 .L1:

L1

decoder YYY or ZZZ ?7? choose one or wait? _

memory jge .L1 (still idle)

arithmetic cmp rdi, rsi compare rdi and rsi _

e in practice, the CPU will try to predict which branch will be taken

(based on past choices at that specific instruction)

e and choose that branch

YYY 3

YYY 2
decoder
memory jge .L1 (still idle)
arithmetic cmp rdi, rsi compare rdi and rsi _

YYY 3

decoder

memory

arithmetic

jge .L1

decide taken branch _

cmp rdi, rsi

LL/

<— going here instead

decoder YYY 3 Misprediction!

memory YYY 2 Misprediction!

arithmetic YYY Misprediction!
jge .L1

cmp rdi, rsi

decoder L11 decoding "ZZZ"
memory YYY 3 (1idle)
arithmetic YYY 2 (idle)

YYY

jge .L1

cmp rdi, rsi

e When all goes perfect, processors can actually execute more than one instruction per cycle
e Modern processor pipelines have between 5 and 40 stages
e At each stage, there are multiple circuitry blocks
(decoders, arithmetic and logic unit (ALU) “ports”, etc.)
e Branch mispredict penalty is typically > 10 cycles

e Main memory latency is 50-200 cycles

e These parameters vary widely from CPU to CPU

e Specific characteristics are often not public

e |tis almostimpossible to predict the number of cycles a given set of instructions will take
(in the presence of branches and memory accesses)

e —> Qualitatively: we try to understand the phenomena at play

e — Quantitatively: We measure at runtime

add rdx, rdi

add rcx, rbx

mov Trax, [rsi]

memory

ALU 1

ALU 2

add rdx, rdi

add rcx, rbx

memory

mov rax, [rsi]

ALU 1

ALU 2

memory mov Trax,

[rsi] _

ALU 1 add rdx, rdi

add rcx, rbx

ALU 2

memory mov rax, [rsi]

ALU 1 ALU 2

add rcx, rbx

add rdx, rdi

memory

ALU 1 ALU 2

mov Trax, [rsi]

add rcx, rbx

add rdx, rdi

MEMORY

Access to memory (“random access memory” or RAM) is slow

On desktop computers, RAM is typically on distinct integrated circuit (IC) packages,
physically centimeters away from the CPU.

Solution: caching

Level 1 (“L1”) cache:

The CPU contains a small amount of extremely fast memory

This memory requires many of logic gates on-package
But it is always available (no latency)
The CPU contains logic to decide which part of the main memory gets stored in its L1 cache

This continuously changes over time

e Level2 (“L2”) cache:
= slower than L1
= but requires fewer logic gates, so we can have more

e Level3(“L3”) cache:

= slower than L2

= but requires fewer logic gates, so we can have more

CPU

L1

32 KB

CPU

L1

32 KB

4 cycles

—
H

L2

256 KB

Ll 4 cycles L2

CPU
—>| 32 KB|——>[256 KB|——>{ 3 MB

L3

40 cycles

CPU

L1

32 KB

4 cycles

—
H

L2

256 KB

40 cycles
e

H

L3

3 MB

80 cycles
e

H..

DRAM

8 GB

memory transits through in units of one cache line
= 64 bytes on x86_64
m 128 bytes on M1 Macs
there is no concept of locality beyond cache lines
every memory access is performed through L1 cache
when all cache entries are full, we need to overwrite one
m —> cache eviction policies e.g. least-recently used (LRU)

pipelined CPUs feature a memory prefetcher (speculatively fills caches in advance)

/en 4 Cache

L1l L1D | 2 13

cache cache cache cache
Cache size 32kB 32kB 1MB KA K
Associativity 8 way 8 way 8 way XX
Cache line size 64 b 64 b 64 b 64 b

Again, cache operation varies widely from CPU to CPU

It is almost impossible to predict how it will behave with complex instruction streams

—> Qualitatively: we try to understand how caches work

—> Quantitatively: We measure at runtime

