LECTURE 22

PARALLEL COMPUTATION

0. PARALLELISM THAT DOES NOT REQUIRE
PROGRAMMER INTERVENTION

e CPU pipelines can be viewed as implementing some form of parallelism

in the sense that multiple executions are being executed simultaneously

e Forexample, one instruction’s arithmetic is performed (in an ALU)

while the next is being decoded

e However, from the programmer’s perspective,

everything must happen as if there was no parallelism at all

. ﬁ‘l Explorer - C:A O] =] 5 Systemsteuerung =] B

e Datei Bearbeiten Angicht Estraz 7 Datei Bearbeiten Angicht 2
Dnline-Dienzte

| &lle Drdner Inhalt vor 'T:A : : g E;Ir 152]
@ Desktop Mame Grobe | Typ | Geandert anm = i
l_':_|--- Arbeitsplatz [Dokumente D1 ateiordner 01.03.10 22:55 Akustizche Signale Anzeige Datum/Uhrz
E-E2 3.5-Diskette (4] 1 Inetpub Dateiordner 01.03.1023:01
SR == (L] (3 Programme D ateiordner 01.03.1018:15 =
- Dokumete % Recycled Papisrkarb 070310 16:52 &
7z -] Inetpub () windaws Diateiordner 01.02.1018:14
| D Programme .-“-‘-.utl:ne:-:e-: Stapelverarbeitungs... 01.03.10 2307
Internet Explarer i Recycled autoexec, sdd 5DD Datei 01.03.10 16:47

-] wind
_3__]4::“‘1%.] neen Bootlog.pry PRY Datei 01.03.10 18:45 %)

w {fl Systemsteuening Boatlog Textdatei 01.03.1018:46 i : .

& Drucker ™ Command Arwendung fiir MS-.. 05.09.9511:11 Landereinstellungen Mail und Fax M aus

Papierkarb -{z5] DFU-Netzwerk Config. syz Syztemndate 01.03.10 2313
(&) Scheduled Tasks Canfig. wir WiN Datei 01.03.1018:16 § - @

-5 Netzwerkumgebung T extdatei 01.03.101812 = -

Fapierkaorb Frontpg.log LOG Datei .031023.04 Fuiltimedia Metzwerk ODBC-Dateng
~{£5 Aktenkoffer lousps Systerndated 30.01.93 0812 [32Bit]
{1 Online-Dienste 03255 Systerndated 01.03.1071312
logo. sy Systerndate 05.03.95 11:11 ﬁ!“

% Windows Media Plaper E Eigenzchaften fur System K ES

|24 Dbjekte] |1,naw Datei Ansicht Wiedergabe Favorten Wechselhzu 2
- = & Fadio g5 Musik #9 Media Guide

Eingabehilfen i Hardware

Allgernein | Geréte-ManagerI Hardware-F‘erilel Leistungsmerkmalel

Sypshem:
Microzaft Windows 35
400950 C
IE & 5.50.4207 2300

R eqistriert fuir;
Testllzer
-0ER-

Programme | Autostart

=| Microzoft Personal \web Server Computer;

Dokumente Online-Dienste . AuthenticAkD

T 2560 ME RAM
T TR T

Einztellungen Zubehir
et E=plarer
@ bicrosoft Exchange
Hilfe ! Microsoft Netbeeting
E t5-005-E ingabeauffarderung
I"_;'jl Outlook, Express
@ windowes-E splorer

+=+

Suchen

Prazentation:

dows2h

Augfubren...

0k | Abbrechen |

EBeenden...

Wi

If 4] Systemstevsning | @ Explarer - C:4

e Multitasking allows multiple executables to run “simultaneously”

(even on a single processor)

e Regularly, the scheduler (part of the OS kernel) decides which task gets to runon a

Processor.

task 0 task 1 task 2
(running) (running) (running)

CPU ©

task 0 task 1 task 2
(running) (running) (running)

CPU ©

task 0
(running)

task 1
(running)

task 2
(running)

CPU ©

task 0 task 1 task 2
(running) (running) (running)
CPU O

task 0
(running)

task 1
(running)

task 2
(running)

CPU ©

task 0
(running)

task 1
(running)

task 2
(running)

CPU ©

task 0
(running)

task 1
(running)

task 2
(running)

CPU ©

e The scheduler is called:

» at regular intervals f times per second, by default:
o Linux: f=1000Hz (>see CONFIG_HZ)
o MacOS: f=100Hz (> see sysctl kern.clockrate)
o Windows 10: f=64Hz (>seetimeBeginPeriod())

= when an task performs a system call (open(),write(),exit(),...)

= when a “hardware interrupt” happens:
o keyboard received a keypress
o network device received data
o storage device finished writing

o sound/video device ready to receive next buffer

https://github.com/torvalds/linux/blob/master/kernel/Kconfig.hz
https://flylib.com/books/en/3.126.1.80/1/
https://randomascii.wordpress.com/2020/10/04/windows-timer-resolution-the-great-rule-change/

 When the scheduler decides to interrupt a running process (e.g. to run another)
» the process is said to “preempted”

® it becomes “runnable”

e When a process executes a system call,
= it starts “sleeping”
» after the requested operation is performed,
o in some cases, it will run again
o in other cases, it becomes runnable and will only run when a CPU is available
= many system calls can take a long time to perform (“blocking” system calls):

read(), write(), recv(), send()

e At any given time, most tasks are sleeping
= waiting for data (e.g. from network)
= waiting for user interaction (e.g. keyboard or touch input)

= waiting on a timer (tasks that run at regular interval)

e The only tasks that are normally running/runnable
are those performing CPU-intensive operations
= graphics rendering
= audio/video/data compression and decompression
= computations

= etc.

poirrier@lpn:~

126, 511
0.32 0.15
9 days, 10:07:17

huaun evolutlon calendar-factory
Xorg
shin/NetworkManager --no-daemon
evolution-calendar-factory
reensaver -no-splash
/bin/nm- applet
evolution-calendar-factory
h_n ‘openbox
) ibexec/goa-identity-service
fusr/libexec/upowerd
lxqt se551on
/ hin/1lxqt-powermanagement
fevolution
goa-identity-service
ycuments/plan.md 17 bench.md

::-:'1-::1|"|"_1:-::1 build/17 bench.ht
/webk _ ebProcess 13 61
eunlutlnn :alendar factnry
1xqt-panel
nm-applet
fusr/bin/pcmanfm-qt --desktop --profile=Llxc
F1o[

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
CPU O CPU 1 CPU 2 CPU 3

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
\4 Y Y Y
CPU O CPU 1 CPU 2 CPU 3

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
\4 Y Y
CPU O CPU 1 CPU 2 CPU 3

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
\4 Y
CPU O CPU 1 CPU 2 CPU 3

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
\4
CPU O CPU 1 CPU 2 CPU 3

task 0 task 1 task 2 task 3 task 4
(running) (running) (running) (running) (running)
CPU O CPU 1 CPU 2 CPU 3

e From a hardware perspective:
= A CPU corresponds to a single integrated circuit (“IC”) package

= A computer can (rarely) have multiple CPUs

Typically only found in datacenters, rarely more than 2
= Each CPU can have multiple cores
o generally 2-8 cores on laptops

o up to 128 on datacenter CPUs

e From a software perspective:
= Everything that can run a task is generally called a “CPU”
= Only the kernel’s scheduler will (sometimes) care about CPU vs. core

= All other software is unaware of the difference

e a CPU can have multiple copies of some logic blocks

e very common for arithmetic and logic units (ALUs)

add rdx, rdi

add rcx, rbx

mov rax, [rsi]

memory

ALU 1 ALU 2

e From a hardware perspective:
= With Simultaneous Multithreading (SMT) (a.k.a. Hyperthreading),
o each core can run multiple (generally 2) tasks (“threads”)
o but they share many logic blocks (in particular ALUs)
o SMT works well when those logic blocks would otherwise be idle

o SMT is ineffective when those logic blocks are the bottleneck

e From a software perspective:
= Everything that can run a task is generally called a “CPU”
= Only the kernel’s scheduler will (sometimes) care about CPU vs. core vs. thread
= All other software is unaware of the difference

» “Thread” has a different meaning in software

1. SIMD

e SIMD stands for Single Instruction Multiple Data

e new, larger registers (in addition to the general purpose ones): “vector registers”

bits | 255..224 | 223...192 | 191...160 | 159...128 | 127...96 | 95...64 | 63...32 | 31...0
256 ymmO
64 fp64 #3 fp64 #2 fp64 #1 fp64 #0
32 | fp32#7 fp32 #6 fp32 #5 fp32#4 | fp32#3 | fp32#2 | fp32#1 | fp32 #0
16
8
e but

= SIMD registers cannot be treated as big integers

s individual “lanes” (8-, 16-, 32- or 64-bit parts) generally cannot be accessed individually

e On Intel (and AMD) ISAs:
s SSE (~1999): 8 128-bit registers xmm@ - xmm7/
s AVX (~2011): 16 256-bit registers ymm@ - ymm15
m AVX-512 (~2016, but not yet generally available): 32 512-bit registers zmm@ - zmm31

e On ARM:
= Neon (~2005): 16 128-bitregisters Q0 - Q15

void add_one(float v[4])

{
v[O] += 1.0;
v[1l] += 1.0;
v[2] += 1.0;
v[3] += 1.0;
}
add_one:
vbroadcastss xmm@, DWORD PTR .LCl[xip] # xmm0@ <- { 1.0, 1.0, 1.0, 1.0 }
vaddps xmm@, xmm@, XMMWORD PTR [xdi] # xmm@ <- xmm@ + [v] (4x 32-bits)
vmovups XMMWORD PTR [xdi], xmmo # [v] <- Xmm@

ret

void many_ops(float v[4]) many_ops:
{ vmovss xmml, DWORD PTR .LCO[rip]
v[O0] += 1.0; vmovss xmm3, DWORD PTR [xdi+12]
v[1l] -= 2.0; vmulss xmml, xmml, DWORD PTR [xrdi+8]
v[2] *= 3.0; MUL
v[3] /= v[2]; vmovss xmm2, DWORD PTR [rxrdi+4]
} vmovss xmm@, DWORD PTR .LC1l[rip]
vsubss xmm2, xmm2, DWORD PTR .LC2[rip]
SUB
vaddss xmm@, xmm@, DWORD PTR [xdi]
ADD
vdivss xmm3, xmm3, xmml
DIV
vunpcklps Xmmo, xmm@, xmm2
vunpcklps xmml, xmml, xmm3
vmovlhps Xmm@, xmm@, xmml
vmovups XMMWORD PTR [xdi], xmm@
ret

This code cannot by performed by a single SIMD instruction

e Rely on compilers (“autovectorization”)
e Write assembly code

e Use compiler “intrinsics”
» |ntrinsics look like C functions
but the compiler knows how to translate them to specific assembly code
» > |ntel intrinsics guide

m > ARM intrinsics

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://developer.arm.com/architectures/instruction-sets/intrinsics/

for (int x = kx; X < nx; Xx++) {
_ m256d v = _mm256_andnot_pd(sign, gx[x]);
__m256d oldmax = maxv[x];
_ m256d newmax = _mm256_max_pd(oldmax, v);
_ m2561 keep = _mm256_castpd_si256(_mm256_cmp_pd(oldmax, newmax, _CMP_EQ_0Q));

maxv [X]
maxi[x]

newmax ;
_mm256_oxr_si256(_mm256_and_si256(keep, maxi[x]), _mm256_andnot_si256(keep, ix));

> refer to the intrinsics guide

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

2. THREAD-LEVEL CONCURRENCY

When the OS runs an executable, it gets its own process

A single executable (if run multiple times) can have multiple independent processes

Memory is virtualized: each process has its own view of the memory it owns

A process can create (“spawn”) multiple threads
Like processes, each thread is an individual task from the point of view of the scheduler

Within a process, threads share a same view of the process memory

Process 0 Process 2 Process 4

Thread 0 Thread 2 Thread 4

Thread 5
Process 1 Process 3

Thread 1 Thread 3 Thread 6

Thread 7

Thread 8

Thread 9

e Pro: Communication between threads is extremely efficient
= Just write something to memory,

s et other threads read it through the same pointer

e Con: Because memory is shared, synchronizing threads is very complex

Wrong code (1)

int ready = 0; // one 1f there is some data in the buffer, zero otherwise
int buffer = 0; // data in the buffer

// Every push()ed element must be pop()ed exactly once.

// - push() will block until the buffer is empty/available/"not ready"
// - pop() will block until the buffer is nonempty/"ready"

void push(int value)

{
while (ready == 1) {
// wait
}
buffer = value;
ready = 1;
}
int pop()
{
while (ready == 0) {
// wait
}
ready = 0;
return buffer;
}

The C compiler is free to reorder this:

void push(int value)

{
while (ready == 1) {
// wait
}
buffer = value;
ready = 1;
}

void push(int value)

{

buffer = value;

while (ready ==
// wait
}

ready = 1;

1) A

into this:

Wrong code (1)

The C compiler is free to infer that this loop:

while (ready == 1) {

}

// wait

has either zero or infinitely many iterations without side effects (UB);

thus remove the loop!

volatile int ready = 0; // one if there is some data in the buffer, zero otherwise
volatile int buffer = 0; // data in the buffer

void push(int value)

{
while (ready == 1) {
// wait
}
buffer = value;
ready = 1;
}
int pop()
{
while (ready == 0) {
// wait
}
ready = 0;

return buffer;

Thread 0
// ready = 1
int pop()
{
while (ready == 0) {
// wait
}
// ready = 1
ready = 0; // ready = 0
// ready = 0
// ready =1

return buffer;

buffer

buffer
buffer

buffer
buffer

IAI

IAI
IAI

IBI
IBI

void push(int value)

{
while (ready ==
// wait

}

buffer = value;
ready = 1;

Thread 1

1) {

// push('B")

volatile int ready = 0; // one if there is some data in the buffer, zero otherwise
volatile int buffer = 0; // data in the buffer

void push(int value)

{
while (ready == 1) {
// wait
}
buffer = value;
ready = 1;
}
int pop()
{
while (ready == 0) {
// wait
}
int b = buffer;
ready = 0;
return b;

void push(int value)

{

while (ready ==
// wait
}

buffer = value;
ready = 1;

Thread 0

// ready

// push('A’)

1) A

// ready

// ready =
// ready =

// ready
// ready

|
~

n
~

buffer

buffer

buffer
buffer

buffer
buffer

IXI

IXI

IBI
IBI

IAI
IAI

void push(int value)

{
while (ready ==
// wait
}

buffer = value;
ready = 1;

Thread 1

// push('B")

1) A

e low-level: compilerintrinsics for “atomic” operations:
combined operations that are performed as a single unit

no thread will every see the memory in an intermediate state

e high-level: use libraries that correctly implement some primitives:
locks, queues, etc.
» Posix threads (“pthreads”; Linux, MacOS)
= OpenMP (Open Multi-Processing; portable)

3. DISTRIBUTED COMPUTING

e |In distributed computing, processes do not share memory

e They must communicate by explicitly sending data to each other
(send(), recv(), etc.)

typically over the network

e Con: Communication is much slower than multithreading

e Pros:
» Easier to implement and reason about
» Scales to higher levels of parallelism
o As of today, off-the-shelf computers can have up to
2 processors x 128 cores x 2 SMT threads = 512 concurrent software threads

o With distributed computing, networked computers can work together in parallel

e Libraries:

= Message Passing Interface (MPI)

4, HARDWARE ACCELERATION

e GPUs were designed to perform the same simple, repetitive operations
= on many pixels (“fragment shaders”), or

= on many 3D coordinates (“vertex shaders”)

float box(in vec2 st, in vec2 size){
size = vec2(0.5) - size*0.5;
vec2 uv = smoothstep(size,

size+vec2(0.001),

st),
uv *= smoothstep(size,
size+vec2(0.001),
vec2(1.0)-st);
return uv.x*uv.y;

vec3 rgb2hsb(in vec3 c){
vec4d K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vecd p = mix(vecd(c.bg, K.wz),
vecd(c.gb, K.xy),
step(c.b, c.qg));
vecd q = mix(vecd(p.xyw, c.I),
vecd(c.r, p.yzx),
step(p.x, c.1));
float d = g.x - min(q.w, q.Y);
float e = 1.0e-10;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)),
d/ (qg.x + e),
q.Xx);

inline __device__ float3 roundAndExpand(float3 v, ushort *w) {
v.x = rintf(__saturatef(v.x) * 31.0°f);
v.y = rintf(__saturatef(v.y) * 63.0f);
v.z = rintf(__saturatef(v.z) * 31.0°f);

*w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z;

V.X *= 0.03227752766457f; // approximate integer bit expansion.
V.y *= 0.01583151765563f;

vV.z *= 0.03227752766457f;

return v;

GPUs were designed to perform the same simple, repetitive operations
= on many pixels (“fragment shaders”), or
= on many 3D coordinates (“vertex shaders”)
they generally adopt a SIMT (“single instruction, multiple threads”) model

» hundreds of threads working on different sets of data

= but running the exact same instructions
good fit for long loops performing repetitive operations
bad fit for if/then/else

GPUs are programmed in special-purpose languages

Typically, all GPU code is compiled
= during application startup,
= by the device driver

s for the specific GPU device installed (amount and subdivision of threads, memory, etc.)

Two dominant players in the GPU market: nVidia and AMD

Three major GPU programming languages:
= CUDA (nVidia, proprietary)
= ROCm (AMD, open-source)

= OpenCL (cross-platform, open-source)

MATRIX MULTIPLICATION

8192 x 8192 matrix multiplication
precision: fp64 (“double”)
CPU: AMD Ryzen 7900 x3d

matmul 1
matmul 2
matmul 3
matmul 4
matmul 5

matmul 6

straightforward implementation 2932.
357.
67.
32.
15.
.962

transpose B matrix

block multiply

same code as matmul 3, SIMD
OpenBLAS

OpenBLAS, 24 threads

1

059
569
105
876
555

1X

8X
44X
89X
188x
1494x

1x
8X

32768 x 32768 matrix multiplication
precision: fp32 (“float”) - total 4 GB per matrix
CPU Ryzen 7900 x3d (released Feb 2023)

matmul_7 OpenBLAS, 1 thread 550.350 s 1x
matmul_8 OpenBLAS, 24 threads 50.577 s 11x
matmul_9 cuBLAS, nVidia A10G (Apr 2021) 13.152 s 42x
matmul 9 cuBLAS, nVidia H100 (Mar 2022) ?7 s 84x?

