
20875 Software Engineering

Tutorial 4

First git project

1. If not already done, configure the name and email to be used in your commits. Configure your

preferred editor to be used by git as well.

2. Create a directory called “test project”.

3. Inside the directory “test project”, create a git repository.

4. Add a file called “main.c” containing:

#include <stdio.h>

int main()

{

printf("Hello, world!\n");

return 0;

}

and a “Makefile” (make sure to use TAB characters for indentation):

main: main.o

clang -Wall -O3 -o $(@) $(^)

main.o: main.c

clang -Wall -O3 -c -o $(@) $(<)

5. Build the executable “main”. Create a “.gitignore” file that ignores that executable and any file

ending in “.o”.

6. Stage the source files (“main.c”, “Makefile”, “.gitignore”) for a commit. Check your staged

area with “git status”.

7. Create the first commit for “test project”.

Second git project

You and your team (Alice, Bob, Carol, Dan, Eve) need to solve a series of optimization problem instances.

To that end, you use the GNU MathProg language. However, writing many similar GNU MathProg files

is tedious, and it would be convenient to write them using Python code. Your team decides to write a

small utility module that makes this easier.

1. Alice creates a git repository called mathprog. In it, she creates a file mathprog.py, in which

she writes a first test case: A small model is stored into a Python string, then simply printed.

Subsequently, Alice, leaves the project. Clone Alice’s repository https://www.poirrier.ca/git/

mathprog.git and read her code.

1

https://www.poirrier.ca/git/mathprog.git
https://www.poirrier.ca/git/mathprog.git


2. Bob emails you. Starting from Alice’s test case, he implemented a MathProg class, which calls

glpsol to solve the instance passed as a string parameter. Bob did not create a branch, but

says you can fetch his commit 79dcd1 in his repository https://www.poirrier.ca/git/bob.git.

Review the code introduced by Bob.

3. Carol and Eve are tasked with reviewing and improving Bob’s code. After reviewing Bob’s work,

Carol finds that Alice’s initial test is no longer sufficient, a decides to generalize it. She creates

a branch carol branch for her code. Fetch carol branch from her repository https://www.

poirrier.ca/git/carol.git into a local branch. For simplicity, we will call this local branch

carol branch locally as well. Switch to it, review Carol’s code. Then, merge that code into your

main branch.

4. After committing her new test, Carol realizes that there is a small logic bug in Bob’s code. When

the parameter nosolve is False (the default), the MathProg does not solve the problem. The

double negation may have been confusing, but it should be the opposite: when nosolve is False,

the problem should be solved. Fix the issue, then create a commit for this code change, still on the

main branch.

5. Dan observes that glpsol’s output mingles with the Python script’s output, which may be confus-

ing. He decides to indent glpsol’s output to separate it visually from the rest. Fetch Dan’s code on

his branch dan branch at https://www.poirrier.ca/git/dan.git. Review Dan’s contribution.

Rebase it on top of your commit on the main branch, then merge it.

6. Meanwhile, Eve implemented a parser for glpsol’s output. As part of her work, she created a

class Array that can hold multi-dimensional lists, and is used for storing solution values. The

new class is also convenient for MathProg parameters, and she modifiess the test to take Fetch

Eve’s eve branch at https://www.poirrier.ca/git/eve.git. Merge it onto the main branch,

combining Eve’s parser with Carol and Dan’s improvements, as well as your bugfix. Resolve any

conflicts that result.

2

https://www.poirrier.ca/git/bob.git
https://www.poirrier.ca/git/carol.git
https://www.poirrier.ca/git/carol.git
https://www.poirrier.ca/git/dan.git
https://www.poirrier.ca/git/eve.git

