
20875 Software Engineering

Useful shell commands

1 Terminals and shells

• A terminal (or console) is an interface for processing keyboard input and displaying text. The name comes

from the fact that terminals used to be physical devices. Nowadays, the device is usually simulated in a graphical

application (a “terminal emulator”).

• A shell is an application that reads commands from its input and executes them. In the case of an interactive

shell, the input is the keyboard input of a terminal. However, shells can also read their commands from a file

(which is then called a “shell script”).

Most interactive shells will understand the following keys:

Control+C Interrupt the currently-running command

Control+D Indicate end-of-file (see redirections below)

Up/Down Browse the history of previously-entered commands

TAB Complete the partially-entered command as far as unambiguously possible

TAB (again) In case of ambiguity, list possible completions

For all the commands we will use, their documentation is accessible using the command man. For example, man ls

gives the manual page for the command ls.

Anything after a # symbol is considered a comment and is ignored (unless the # symbol is itself inside a string delimited

by ’ or ").

2 Filesystem

The filesystem is a (directed) graph whose nodes are directories (also known as folders) and files. Files are the leaf

nodes. Nodes are labeled by strings: the file or directory name.

An absolute path for a file (or directory) describes where that file (or directory) is located in the filesystem: It starts

with a slash, and is followed by the labels of the nodes on a directed path from the root to the file (or directory)’s

node, separated by slashes.

Example 1. Consider the filesystem tree in Figure 1. An absolute path for file 2 is

“ /directory A/subdirectory D/file 2”.

Every directory d contains two specially-named subdirectories: “.” (a single dot) refers to d itself, and “..” (two

dots) refers to directory containing d (its parent directory).

Example 2. Another absolute path of file 2 is “ /directory A/subdirectory C/../subdirectory D/file 2”.

Note. The special directories “ .” and “ ..” are aliases (technically: “hard links”), which we typically ignore when

drawing the filesystem (as we did in Figure 1), allowing us to avoid cycles and draw it as a tree.

1

+---+ directory A

| |

| +---+ subdirectory C

| | |

| | +--- file 1

| |

| +---+ subdirectory D

| | |

| | +--- file 2

| |

| +--- file 3

|

+-- directory B

Figure 1: Filesystem tree for Example 1.

Any process (including the shell) has a working directory (also known as current directory, or current working direc-

tory), which may change over time. File paths can be expressed relative to this current directory. A path that does

not start with a slash is considered a relative path, and consists in the labels on a path from the current directory to

the targeted file or directory, separated by slashes.

Example 3. If the current working directory is /directory A/subdirectory C, then a relative path for file 2 is

“ ../subdirectory D/file 2”.

3 Commands dealing with files and the filesystem

pwd Print the working directory to standard output

ls List files – by default, prints the contents of the current directory to standard output

cd Change the current directory

cat Print the contents of files to standard output

less Display the contents of files (allows browsing them with Up/Down) – Type q to exit

hexdump Print the contents of files in hexadecimal

strings Print the parts of files that are printable (ASCII) characters

cp Copy a file

mv Move (rename) a file

rm Remove (delete) a file

mkdir Create (make) a directory

rmdir Remove an empty directory

2

4 Other useful commands

echo Print command-line arguments to standard output

wget Download files from the internet

curl Download files from the internet

zip Compress and decompress files in the zip format

tar Create and extract archives in the tar (and tgz) format

top Display currently-running processes – Type q to exit

time Run commands passed on the command line, measure the time they take to run

touch Update the last-modified time of a file, create it if it does not exist

chmod Change the access rights (read, write, execute) of a file

chown Change the ownership (user and group) of a file

sudo Run commands passed on the command line as root (superuser / administrator)

head Print the beginning of a file

tail Print the end of a file

5 Running executables

Many of the above commands actually correspond to executable files. We do not need to specify their complete (either

absolute or relative) paths, because they are located in specially-configured directories where the shell searches for

them.

Instead, if we want to tell the shell to run an executable file designated by its path, our command must contain a

slash. For example, we could type an absolute path (since it always starts with a slash). To run an executable that

is located in the current working directory, we can prepend its name with ./ (since the . relative path refers to the

current working directory).

Example 4. With the following commands, we make file 3 executable and run it:

cd /

cd directory_A

chmod +x file_3

./file_3

6 Standard input and output, redirections

By default, every process starts with 3 files already open: standard input (stdin), standard output (stdout) and

standard error (stderr). Unless otherwise specified, reading from standard input yields the operator’s keyboard input,

and writing to standard output or error prints on the terminal.

However, we can redirect stdin and stdout to actual files, or pipe them to other commands.

command > path Redirect the standard output of command to the file designated by path

command < path Take the standard input of command from the file designated by path

command1 | command2 Pipe the standard output of command1 to the standard input of command2

3

The point of having stderr in addition to stdout is to give commands an opportunity to report errors to the user

even when stdout is redirected. For this reason, it is less frequently useful (albeit possible) to redirect stderr.

Example 5. Various redirections:

Write the current directory’s file list to a file called "list.txt":

ls > list.txt

Print the content of "list.txt" in hexadecimal, pipe to the "less" pager:

hexdump list.txt | less

Print the content of "list.txt"

cat < list.txt

4

	Terminals and shells
	Filesystem
	Commands dealing with files and the filesystem
	Other useful commands
	Running executables
	Standard input and output, redirections

