
20875 Software Engineering – Assignment 1

Due Monday, November 10th, 2025, 23:59 CEST

The assignment consists in implementing a simplified form of “placement” in integrated circuit design. Grading

will be partially automated, and you are asked to follow precisely the instructions given in this document. In

particular, the input, output, and exit status of the program must all conform to specific formats detailed below.

The assignment is to be uploaded as a single archive file (either .zip or .tgz) on BlackBoard by the end of

November 10th.

Rules. This is an individual assignment. You are allowed to talk about the assignment with your classmates.

However, you must write all your code on your own. As a consequence, upon request, you will be able to explain

and modify any part of your code.

Invocation. This assignment can be completed in Python or in C. For any other language, you must get

approval first. The program will be invoked with the following commands:

Python: python3 place.py {formulas} {image}

C: ./place {formulas} {image}

where {formulas} is the name of the input file containing Boolean formulas (e.g. “circuit.txt”), and {image}
is the name of the output image file in the PPM format (e.g. “circuit.ppm”).

Exit code. The program exits with a zero exit code if the input file conforms to the specification. It exits

with a nonzero exit code if it is invalid.

Compilation. [Only for assignments completed in the C language.] If a file called “Makefile” is present in

the submitted archive, the code will be compiled with the command: make

Otherwise, it will be compiled with the command clang -Wall -O3 -o place *.c

External libraries/modules. You are allowed to use anything included in the standard library of the

programming language you use. In addition you are allowed to use Python’s PIL module (Pillow), or the C

libraries libnetpbm and stb image. If you need anything else, you must get approval first.

Grading.

• [3 marks] The program accepts all input files that conform to the specification and parses them correctly.

• [3 marks] The program correctly rejects malformed files (no crash or uncaught exception/error).

• [4 marks] For valid input files, the program produces a correct output image, as specified in this document.

It exits (with a zero exit code) in 10 seconds or less for valid input files of size similar to the examples

provided.

• [1 bonus mark] The program produces images with less than one million pixels for all input files tested.

1 Objective

The objective is for your program to read a set of Boolean expressions, and write an image whose pixels

implement a circuit diagram corresponding to those Boolean expressions. For example, the following figure

1

https://netpbm.sourceforge.net/doc/ppm.html

shows the input and output of our program, where we want it to implement a XOR gate:

input file:

either = in[0] or in[1];

both = in[0] and in[1];

out[0] = either and (not both);

circuit diagram:

output image:

2 Input

The input must conform precisely to the following specification. Any program that cannot be tokenized or

parsed according to these rules must be rejected with an error message. Crashes and uncaught exceptions are

not considered appropriate error messages.

2.1 Tokenization

1. Comments. Anything on a line after the character “#” is ignored.

2. Special characters. There are 6 special characters: “(”, “)”, “[”, “]”, “=” and “;”.

3. Numbers. A number is any sequence of (one or more) consecutive digits (“0”, . . . , “9”).

4. Words. A word is any sequence of (one or more) consecutive letters (“A”, . . . , “Z” and “a”, . . . , “z”),

digits (“0”, . . . , “9”) and underscores (“ ”) that starts with a letter or an underscore.

5. Blanks. Spaces (“ ”), tabs (“\t”), carriage returns (“\r”) and newlines (“\n”) are considered blank

characters. All blank characters are ignored except for the fact that they can separate two words/numbers.

6. Keywords and identifiers. There are 5 keywords: “in”, “out”, “not”, “and”, “or”. Any other word

is an identifier.

2.2 Parsing

We define here how a program is to be parsed, once it has been tokenized into a sequence of numbers, keywords,

identifiers and special characters.

A program is a sequence of assignments. Each assignment consists in (a) a target, followed by (b) the special

character “=” and (c) an expression, then (d) a semicolon (“;”). A target (a) is either an identifier, or an output

2

denoted by out[k] where j is a non-negative integer. It cannot have been previously assigned. Moreover, it

cannot be used in its assigned expression, nor in any expression preceding its assignment.

The expression (c) is a Boolean formula involving elements. An element can be either a previously-assigned

target, or an input denoted by in[j] where j is a non-negative integer. An expression is either an element, or

the negation (“not”) of a sub-expression, or a conjunction (“and”) of 2 or more sub-expressions, or a disjunction

(“or”) of 2 or more sub-expressions. If those sub-expressions are not elements themselves, then they must be

surrounded by parentheses. As a result, there is no need for operator priorities.

BNF grammar:

<target> ::= <identifier> | "out" "[" <number> "]"

<element> ::= <target> | "in" "[" <number> "]"

<paren-expr> ::= <element> | "(" <expr> ")"

<negation> ::= "not" <paren-expr>

<conjunction> ::= <paren-expr> "and" <paren-expr> | <paren-expr> "and" <conjunction>

<disjunction> ::= <paren-expr> "or" <paren-expr> | <paren-expr> "or" <disjunction>

<expr> ::= <negation> | <conjunction> | <disjunction> | <paren-expr>

<assignment> ::= <target> "=" <expr> ";"

<program> ::= <assignment> | <assignment> <program>

3 Output

The output image must conform precisely to the following specification. It is an image file in the PPM format.

The width and height (w, h) of the output image is chosen by your program. Pixel coordinates are given by

(x, y) where (0, 0) is the top-left pixel and (w− 1, h− 1) is the bottom-right pixel. Every pixel in the image has

one of 6 distinct colors:

color (red, green, blue) operation equivalent circuit

white (255, 255, 255) -

black (0, 0, 0) connection (all sides)

blue (0, 0, 255) connection (top-down, left-right)

red (255, 0, 0) NOT

yellow (255, 255, 0) AND

green (0, 255, 0) OR

Each pixel has 4 edges (top, bottom, left, right). Each edge can be an out-edge (whose Boolean value it drives)

or an in-edge (Boolean value driven by an out-edge of the adjacent pixel). Every in-edge must be driven (either

directly, or through black and blue pixel connections) by exactly one out-edge.

Pixels in the leftmost column (x = 0) on even lines correspond to the inputs. Specifically, pixel (0, 2j) drives

its right out-edge to the value in[j] if in[j] is used in any expression, and must be blue. Any other pixel in

3

https://netpbm.sourceforge.net/doc/ppm.html

column 0 must be white.

Pixels in the rightmost column (x = w−1) on even lines correspond to the outputs. Specifically, pixel (w−1, 2j)

must be driven by its left in-edge to the value of out[k] if out[k] is assigned, and must be blue. Any other

pixel in column w − 1 must be white.

Pixels in the other columns (1 ≤ x ≤ w − 2) have the following meanings. In the explanations below, white

pixels do not count as “neighbors”, since they do nothing.

1. White pixels do not connect anything. Pixels outside of the image behave like white pixels.

2. Black pixels connect their (up to four) neighbors together.

3. Blue pixels connect their top and bottom neighbors together (if present), and their left and right neighbors

together (if present).

4. Red pixels must have exactly two neighbors. They drive their out-edge, on the right side, to the negation

(NOT) of their in-edge (driven by the other neighbor).

5. Yellow pixels must have exactly three neighbors. They drive their out-edge, on the right side, to the

conjunction (AND) of their two in-edges (driven by the other neighbors).

6. Green pixels must have exactly three neighbors. They drive their out-edge, on the right side, to the

disjunction (OR) of their two in-edges (driven by the other neighbors).

Given those rules, the image must be such that the value of the outputs (out[k] for all k) is driven to the

appropriate Boolean function of the inputs (in[j] for all j), as described by the input file.

Beware that not every image composed of the six colors above is a valid circuit. In particular, two out-edges

can never be connected together (neither directly, nor through black or blue pixels). For example, the following

circuit is invalid in three ways:

• The bottom in-edge of the OR gate at (1, 0) is not driven,

• the top in-edge of the AND gate at (1, 2) is not driven, and

• the in-edge of out[1] at (4, 0) is driven by two out-edges.

Invalid circuit

4

	Objective
	Input
	Tokenization
	Parsing

	Output

