
20875: Software Engineering

Project report guidelines

Fall 2024

What to upload

For the project, upload all of the following to Blackboard:

1. Your code:

This can be an archive (e.g. tar or zip), or a link (e.g. to a public repository like GitHub or GitLab).

2. A short report (see details below):

It can be written directly on Blackboard, or an attached document (e.g. text, pdf or MarkDown), or a link to

such document.

3. Relevant material if any:

Input data, example output, screenshots, videos, . . . (uploaded directly, or as a link)

Short report

Regarding the short report, it should be about a page long (there is no hard minimum or maximum, but a page should

be plenty enough). As a general rule, the purpose of the short report is not to

• explain how to use or install the project

• explain what specific functions / classes / modules do

• describe the individual steps of the algorithms / methods in use.

All of the above, if required, would be a separate documentation. Instead, the short report should present:

• A paragraph explaining what your project does, in which language it is implemented, and what context it is

intended to be used in (e.g. a system library, a device driver, a server-side web application, a server administration

tool, a mobile app, a desktop application, an inference engine, . . . )

• If relevant, the general components of your project (e.g. a GUI module + back-end logic, or preprocessing

pipeline + main algorithm + various performance-improving heuristics, . . . )

• Any hurdle or interesting problems you encountered. Even seemingly trivial things can be interesting: For

example, installing a library your project depends on may be complex, and you may have found a systematic

way to make it work. Or, you may have managed to get data from a source that did not intend to provide

machine-readable data.

• Any ideas you came up with. Those ideas may be fully implemented in your project, or just as a proof-of-concept.

1



Example

Note: the text below is just an imaginary example, and its structure may not be a good fit for your specific project.

You are free (and encouraged) to structure your report in a different manner.

We made a routing application for dog walkers. It is an iOS app written in the Swift language.

The main components are (i) the user interface, (ii) a Google Maps API query module, (iii) a routing engine.

The UI has three panes, one for the map area configuration and general user settings, one for the dog data entry, and

one main pane showing the map with the current position and the advised route. For each dog, we can encode the

pickup and drop-off coordinates, the pickup and drop-off time windows, and a list of fellow dog exclusions (some dogs

just won’t get along).

We encountered issues with the Google Maps API: For n dogs, we need to query distances for a full n2 distance matrix.

As such, we easily hit the query rate limits for the free tier of the Google Maps API. For now, our solution is to ask

the user to request a route computation at least two hours in advance, so that we can spread our queries over time.

The route computation is not trivial. The problem is similar to (but distinct from) the “capacitated vehicle routing

problem with time windows”, and it turns out to be NP-hard. We model it as a mixed-integer programming problem

and solve it using an off-the-shelf branch-and-bound solver. However, out of the box, the solver was too slow for

practical purposes (multiple hours for our randomly-generated 60-dog example instance). To overcome this, we opted

for a standard column-generation formulation, as generally used in the vehicle routing literature. The complexity here

came from our fellow-dog-exclusion constraint, but we managed to modify an existing pricing algorithm to take that

into account.

As currently implemented, our application lacks many of the features we initially planned for (bark recognition, trash

bin avoidance, ...), and the user needs a jailbroken iPhone for sideloading. Also, it tends to drain the phone battery

in a couple of hours, which we plan to solve in a future release. However, it works mostly well enough for the smaller

dog walks.

2


