Software Engineering

Practical organization

Lectures

(Sarfatti 25, piano terra) • Regular room: Aula 5

• Regular time:

- Wednesdays 10:15 - 12:45
- Fridays 8:30-10:00

• Plus:

- Wed Sep 11 13:45-16:00
- Fri Sep 13 13:45 - 16:00
- Fri Sep 20 13:45 - 16:00

(Sraffa 13, piano 3)

(Sarfatti 25, piano terra)

(Sraffa 13, piano terra)

Aula N31 Aula 5 Aula N05

Contact

- Lecturer: Laurent Poirrier laurent.poi
 - drop-in office hours: TBD
 - any other time: email me

- TA: Caicai Chen caicai.cher
 - office hours (remote): book appointment

laurent.poirrier@unibocconi.it

caicai.chen@unibocconi.it

Material

- No reference book
- Slides will be available
- Some additional resource links will be shared

Evaluation

- 20% assignments (individual)
- 20%+ project (individual or groups of 2)
- written exam
 - open-book, no devices
 - multiple-choice + open-ended questions

Course overview

 Part 1: How computers works 	• Part 3:
 Boolean logic, integers 	Spe
Instructions	Doc
Memory	Stat
 Part 2: Software development 	• Part 4:
 Compiling (clang, make,) 	■ CPL
 Architectures, portability (ABIs,) 	Data
 Code management (git) 	Para

Correctness

- ecifications
- cumentation, testing
- itic & dynamic analysis, debugging

Performance

- U pipelines, caches
- ta structures
- allel computation

Project

Choice of project topic

- Submit your own topic
- Subject to my approval
- There will be a deadline for topic submission (but changes are possible)
- I will make suggestions

Example topics

- add features to an open source project (ideally useful to you, look at e.g. F-Droid apps)
- improve performance of an open source project
 - aim for low-hanging fruit
 - performance is not just speed: memory, network data, power
- find bugs in an open source project
 - aim for low-hanging fruit
- fix bugs in an open source project
 - look at bugzilla, github/gitlab issues
- develop your own project (ideally useful to you)

Project organization

• Individual or groups of two

• I will help you in class and after class

Project grading

- Overall weight 20% of final grade at least
- More than 20% for outstanding projects
- Write a 1-page report

Evaluation criteria

- Correctness
- Technical difficulty
- Originality
- Impact and presentation

Policy for participation in open source projects

no extra marks for getting "upstreamed"

• you "must" get my approval before contacting project developers (email, pull requests, etc.)

Preparation for tutorials

Development environment

We will need

- clang or gcc
- make
- hexdump
- objdump

See also: List of useful shell commands for this course

Installing a suitable development environment

• On Windows:

Install Windows Subsystem for Linux (WSL2, specifically)

• On MacOS:

Install Homebrew: https://brew.sh/

 On GNU/Linux, FreeBSD, OpenBSD: Any distro should work.