
Boolean logic

1



2



We are here

Part 1: How computers works

Boolean logic, integers  TODAY

Instructions

Memory

Part 2: Software development

Compiling (clang, make, …)

Architectures, portability (ABIs, …)

Code management (git)

Part 3: Correctness

Specifications

Documentation, testing

Static & dynamic analysis, debugging

Part 4: Performance

CPU pipelines, caches

Data structures

Parallel computation

←

3



Boolean values, operators, expressions

4



Boolean values

False = 0

True  = 1

Boolean variable:

     x ∈ {0, 1}

5



Boolean operators

operator math notation pseudocode / Python C code logic gate

negation ¬ not !, ~
A Q

conjunction ∧, × and &&, & A

B
Q

disjunction ∨, + or ||, | A

B
Q

6



Boolean expressions

Example expression:

(a and b) or (not c)

Example function:

f(a, b, c) := (a and b) or (not c)

7



NOT operator

Truth table:

x not x

0 1

1 0

Example assignment:

w := not a

8



AND operator

Truth table:

x y x and y

0 0 0

0 1 0

1 0 0

1 1 1

Example assignment:

z := a and (not b)

9



OR operator

Truth table:

x y x or y

0 0 0

0 1 1

1 0 1

1 1 1

Example assignment:

z := (not a) or (b and c)

10



More operators!

A

B
Q

XOR
x y x xor y

0 0 0

0 1 1

1 0 1

1 1 0

A

B
Q

NAND
x y x nand y

0 0 1

0 1 1

1 0 1

1 1 0

A

B
Q

NOR
x y x nor y

0 0 1

0 1 0

1 0 0

1 1 0

11



Q: How many distinct unary Boolean operators?

A: one?? (NOT)

Actually, we have 4 deterministic unary operators in total (counting 3 trivial unary operators):

always-false

x 0

0 0

1 0

always-true

x 1

0 1

1 1

identity

x x

0 0

1 1

NOT

x not x

0 1

1 0

12



Q: How many distinct binary operators?

A: As many as there are corresponding truth tables.

Q: How many distinct truth tables for two Boolean inputs and one Boolean output?

x y op(x, y)

0 0 ?

0 1 ?

1 0 ?

1 1 ?

A:   2 =4 16

13



Q: Why do we often use only NOT, AND, OR?

A: Because

they are the most intuitive

all nontrivial operators can be represented with NOT, AND, OR

Examples:

x nand y = not (x and y)

x xor y = (x or y) and (not (x and y))

Note:   NAND and NOR are called universal logic gates:

every nontrivial operator can be represented with only NANDs (or only NORs)

14



Q: How do we prove this?

x xor y = (x or y) and (not (x and y))

A:

x y x xor y (x or y) and (not (x and y))

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

The identity is correct iff the truth tables match.

15



Boolean identites and Boolean problems

16



Boolean identities I

x and 0 = 0

x or 1 = 1

x and 1 = x

x or 0 = x

x or x = x

x and x = x

17



Boolean identities II

AND is commutative:

AND is associative:

OR is commutative:

OR is associative:

x and y = y and x

x and (y and z) = (x and y) and z

x or y = y or x

x or (y or z) = (x or y) or z

18



Boolean identities III

Distributivity (AND over OR):

Distributivity (OR over AND):

De Morgan’s law (1):

De Morgan’s law (2):

x and (y or z) = (x and y) or (x and z)

x or (y and z) = (x or y) and (x or z)

(not x) and (not y) = not (x or y)

(not x) or (not y) = not (x and y)

19



Satisfiability problem

Given a Boolean expression, find a value for each variable such that the expression is true.

Equivalently: Find a 1 in the truth table.

Example: x1 and ((not x2) or x3) and (not x3)

x1 x2 x3 x1 and ((not x2) or x3) and (not x3)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Solution:   x1 = 1,  x2 = 0,  x3 = 0
20



Definitions

Variable:  for some 
Ex.:

Literal: either  or  for some 
Ex.:

Disjunctive clause:  for some 
Ex.:

Conjunctive clause:  for some 
Ex.:

x ​ ∈j {0, 1}, j ∈ J ⊆ N

x1
x5

x ​j ¬x ​,j j ∈ J

x3
(not x8)

​ ¬x ​ ∨⋁j∈J0 j ​ x ​⋁j∈J1 j J , J ⊆0 1 J

x2 or (not x4) or (not x6)
(not x1) or x5 or x6 or x7 or x9

​ ¬x ​ ∧⋀j∈J0 j ​ x ​⋀j∈J1 j J , J ⊆0 1 J

x2 and (not x4) and (not x6)
(not x1) and x5 and x6 and x7 and x9

21



Conjunctive normal form

The conjunctive normal form (CNF) is a conjunction of disjunctive clauses:

Examples:

​ ​ ​ ¬x ​ ∨ ​ x ​ ​ , where J , J ⊆
i∈I

⋀
⎝

⎛

j∈J i,0

⋁ j

j∈J i,1

⋁ j
⎠

⎞
i,0 i,1 J ⊆ N, ∀i ∈ I ⊆ N

((x1 or x2) and (x3 or x4) and (x5 or x6))

((x1 or (not x2)) and (x3 or (not x4)))

(x2 or (not x4) or (not x6))
and ((not x1) or x5 or x6 or x7 or x9)
and ((not x1) or (not x2) or (not x3))
and (x4 or x5 or x6)

22



Disjunctive normal form

The disjunctive normal form (DNF) is a disjunction of conjunctive clauses:

Examples:

​ ​ ​ ¬x ​ ∧ ​ x ​ ​ , where J , J ⊆
i∈I

⋁
⎝

⎛

j∈J i,0

⋀ j

j∈J i,1

⋀ j
⎠

⎞
i,0 i,1 J ⊆ N, ∀i ∈ I ⊆ N

((x1 and x2) or (x3 and x4) or (x5 and x6))

((x1 and (not x2)) or (x3 and (not x4)))

(x2 and (not x4) and (not x6))
or ((not x1) and x5 and x6 and x7 and x9)
or ((not x1) and (not x2) and (not x3))
or (x4 and x5 and x6)

23



Theorems

Every Boolean expression can be put into CNF

For every Boolean expression with  variables and  literals using operators { NOT, AND, OR }, there

exists an equivalent CNF with  variables  clauses and  literals at most.

Satisfiability for a CNF (“SAT”) is hard.

Every Boolean expression can be put in DNF

For every Boolean expression with  variables and  literals using operators { NOT, AND, OR }, there

exists an equivalent DNF with  variables and  literals at most

Satisfiability for a DNF is trivial.

n k

n + k 3k 7k

n k

n n × 2n

24



Example:
Find a value for x1, x2, x3, x4, x5, x6 such that the following expression (in DNF) is true.

1. Take any clause, e.g. (x2 and (not x4) and (not x6)).

2. Set variables to appropriate value so that all literals are true:

x2 = 1,  x4 = 0,  x6 = 0.

3. All other variables can take any value.

4. Done

(x2 and (not x4) and (not x6))
or ((not x1) and x5 and x6 and x7 and x9)
or ((not x1) and (not x2) and (not x3))
or (x4 and x5 and x6)

25




