Hardware

Levels of abstraction in IC design

0. integrated circuit (IC) layout

1. transistors

2. logic gates

3. “intellectual property” (IP) block

0. IC layout

Y := A xor B (IClayout)

Y := A xor B (transistors)

Y := A xor B (logic gate)

4-bit equality comparator:

A3><23—|—A2><22—|—A1><21—|—A0><20
Bg><23—|—32><22—|—31><21—|—30><20

assuming a
and b

1

if a == b then x :
if a I=b 0

then x :

A.A A A

271 0

IT7T

4-bit
equality
comparator

Ox

m O—
m O—
m O—

3210

4-bit equality comparator:

A3><23—|—A2><22—|—A1><21—|—A0><20
BgX23—|—32X22—|—Bl><21—|—B()X20

assuming a
and b

1

if a == b then x :
if a I=b 0

then x :

=

'--_—-'.-I‘.

VYVY

oo
mo
mo
mo

3210

Example: n-bit addition

Example: n-bit addition

carxry

S O

SR -

R, R, ©

a + b

=R, S

Example: n-bit addition

carxry

S O

N

a + b

S | KB O

Example: n-bit addition

carxry

a + b

e

S | KB O

Example: n-bit addition

carxry

a + b

e o

e

S | KB O

Example: n1-bit addition

carry

a+ b

— o &

I = Y = g

S|P, | =L | S

e |nput:

= 1bitofcarry:

» 1 bitofa: A

= 1bitofb: B
e Output:

= 1bitofcarry:

Ci

Cout

» 1 bitofthesuma + b: 9

e Operation:

A

B

Compute C,+ and .S such that

C;

— C’out X 2

S

carry 11110
a 2 1|1
b 2 1|1
a+b 1 1|0

e |nput:

= 1bitofcarry:

» 1 bitofa: A

= 1bitofb: B
e QOutput:

= 1bitofcarry:

Ci

Cout

» 1 bitofthesuma + b: 9

e Operation:

A

B

Compute C,+ and .S such that

C;

— Cout X 2

S

Truth table:
Cn A B Cout S
O 0 O 0 O
0O 0 1 0 1
0O 1 O 0 1
0O 1 1 1 O
1 0 O 0 1
1 0 1 1 O
1 1 O 1 O
1 1 1 1 1

Boolean expressions: Truth table:

>

o
C—F

e S :=Axor B xoxr C}, C..
o (.t 1=(Aand B)or ((A xor B)and C},,) 0
Logic diagram: 0
A 0

1

1

Cout 1

1

I—II—IOOI—'I—'OO’;B
_ o B O R o = o ™
= = = O = O O o

~ ©o o ~r o +~ ~ o| W\

Notes:

e Called “full” in contrast to the “1-bit half adder” which has no (...

e There can be multiple valid Boolean expressions (and logic diagrams)

A

B E
E:Ti“ S

G-EI-I.I[.

Notes:

e Called “full” in contrast to the “1-bit half adder” which has no (...

e There can be multiple valid Boolean expressions (and logic diagrams)

1-bit full adder

™ Clout

e |e—— &
S| P—
e
4—
o e——
S| D
D><—c%>
S| PE—

B
1-bit 1-bit 1-bit 1-bit
full full full full
adder adder adder adder
0 — C1in C1out —> Cin Cout —> Cin Cout —> Cin C1ou‘|:

| | | |

IP blocks are designed (and combined) in hardware description languages (“HDL”):
Verilog, VHDL and derivatives

HDL is then translated into IC layouts by specialized tools.

interface adder_if();
logic rstn;
logic [7:0] a;
logic [7:0] b;
logic [7:0] out,;
logic carry;

endinterface

module adder(adder_if 1);
always_comb begin
if (i.rstn) begin
1.out <= 0;
i.carry <= 0,
end else begin
{i.carry, 1.out} <= 1.a + 1.b;
end
end
endmodule

SystemVerilog code for an 8-bit adder

The IC design and manufacturing industry

e “foundry” or “fabrication plant” (“fab”): plantin which ICs are manufactured,

and by extension, companies who own such plants (e.g. Intel, TSMC, Samsung).

e “process node”. marketing name given by foundries to a particular version of their

manufacturing process - usually a “feature size”: the size of some parts of the

transistors (e.g. 5nm, Tnm, etc.) - but not directly comparable across companies.

Smaller tansistors means:
® more transistors (per unit of area)
= [ower power consumption

» faster ICs (propagation delayy, power consumptiony, heat dissipationy)

e fabless: company that does not own fabrication plants (e.g. ARM, AMD, Apple, nVidia).
Such companies either:
» sell the designs of their IP blocks (ARM), or

» subcontract foundries to manufacture their designs for them (AMD, Apple, nVidia).

e “pure-play” foundries (e.g. TSMC): foundries who manufacture other companies’ designs.

e integrated device manufacturer (IDM) (e.g. Intel): designs and manufactures its own ICs.

e Inthe early 2000s, Intel (US), AMD (US) and IBM (US) have the best manufacturing

technology. All three are IDMs - they design and manufacture in-house.

e Around 2008, AMD (US) spun off its foundry (as “GlobalFoundries”) and became fabless.
Note: first iPhone released in 2007 in the US

e Inthe 2010s, TSMC (Taiwan) emerges as a major foundry for Apple (US), nVidia (US) and AMD.

e In 2014, IBM sells its manufacturing business to GlobalFoundries.

e Asof 2024, GlobalFoundries is still one of the largest pure-play foundries

but it has fallen behind in terms of technology (by 5-10 years).

e Since ~2018, TSMC (Taiwan) has had the best process node, ahead of Samsung (Korea) and
Intel (US).

e TSMC’s advantage in large part due to early bet on extreme ultra-violet (“EUV”) technology.
Now, Samsung and Intel also use EUV tech.

ASML (Netherlands) is currently the only supplier of EUV-capable machines.

e Apple (US), AMD (US), nVidia (US), Qualcomm (US) all mostly subcontract TSMC to fabricate
their top-of-the-line ICs.

Microprocessors

e Logic gate circuits allow us to compute Boolean functions very fast
limited by propagation delay in copper (nanoseconds per meter) and transistors
(picoseconds)

e Boolean functions can model essentially anything we can compute today.

But

e we cannot design and manufacture a new IC for each algorithm or computing task
e we need many logic gates, even for simple things
~100k transistors for a 64-bit integer division

for context, modern microprocessors have 1-100 billion transistors

— We break down complex algorithms into simple steps.

Logic gates

A clock

Memory

Input and output devices

e Memoryis N bitsz € {0, 1}N (e.g. for 16 GB, N ~ 128 X 10%)

e At every clock cycle (e.g. 1.2 GHz), we update the memory:

r, < fi(x) Vi=20,...,N

e To simplify the model

= Some of the memory comes from input devices

= Some of the memory is sent to output devices

In this model, we update the whole memory at every clock cycle:

e Thatwould be 128 x 10” x 1.2 x 10 = 153.6 x 10'® b/s
~ 19,200, 000, 000 GB/s
e As of 2024, memory maxes out at ~ 800 GB/s

Therefore, we cannot have too many different Boolean functions fz

Instead, at each cycle, the computer executes one of a limited set of instructionsin a
microprocessor. Ex.: “Central Processing Unit” (CPU), “Graphics Processing Unit” (GPU).

Instructions are read sequentially from memory and they can be:

e a memory read / write (a tiny amount, like 512 bits)
e 64-bit arithmetic (+, -, %, /, ...)
e 3 comparison (<, >, =,...)

e abranch (if,while,...) which alters the control flow of instructions

Instruction Set Architectures (ISA)

An ISA specifies:

e How the machine is organized (memory, etc.)

e What instructions are available

e How instructions are encoded into bits

Two major ISAs in practice:

e Xx86_64 (aka. x64,x86 64, AMD64): Intel® and AMD® 64-bit CPUs
e AATrch64 (aka. ARM64): ARM®-based 64-bits CPUs (most phones, Apple M1 - M4)

Many older or less-prominent ISAs:

x86, Itanium, ARMv7, RISC-V, PowerP(C, ...

int f(int a, int b, int c)

{

return (a * b) / c;

}

Xx86_64: AArcho64:
89 f8 89 dl1 0f af c6 99 7 9 c3 1b @1 7c 00 1a c2 0c 00 d6 5f 03 c0
f: f:

mov eax, edi # 89 T8 mul wo, wd, wl # 1b 01 7c 00

mov ecx, edx # 89 dil sdiv w@, w@, w2 # 1la c2 0c 00

imul eax, esi # 0Of af c6 ret # d6 5f 03 c0

cdg # 99

1div ecx # 7 9

ret # c3

T assembly 7

e Assembly is the lowest-level programming language

e Usuallyin 1:1 correspondence with binary encoding of instructions

e Typically, one line perinstruction

mov eax, edi
mov ecx, edx
imul eax, esi

cdq

1div ecx

ret

mov a, b
imul a, b
1div a
cdg

ret

H H H H H H

89 8

89 d1

0f af c6
99

7 f9

c3

move
signed integer multiply
signed integer divide

convert double-word (32 bits) to quad-word (64 bits)

return

a<+b
a<—a X b

eax <— eax /b

sign-extend eax into edx:eax

return to calling function

f:

mul w@, wd, wl # 1b 01 7c 00
sdiv wd, wld, w2 # 1la c2 0c 00
ret # d6 5f 03 c0

mula,b,c multiply a+b xc
sdiva,b,c signedintegerdivide g « b/c

ret return return to calling function

X86_64:

f:

mov eax, edi
mov ecx, edx
imul eax, esi
cdq

1div ecx

ret

AArch64:

f:
89 T8 mul wo, wo, wl # 1b 01 7c 00
89 dil sdiv w@d, w@, w2 # la c2 @c 00
O0f af c6 Tet # d6 5f 03 c0
99
f7 f9
c3

small, fixed set of variables that can be accessec

instantly

16 (x86_64) or 31 (AArch64) general-purpose 64-

DIt registers

plus special registers and flags (not accessible directly)

plus larger registers for extended operations (e.g. non-integer numbers)

sixteen 64-bit registers:

rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9, ri1e, ri1l, ri12, ri13, rl14, rl15

we can access the lower 32 bits separately:

eax, ebx, ecx, edx, ebp, esp, esi, edi, r8d, r9d, rled, rlld, rl2d, rl13d, rl4d, rl5d
we can access the lower 16 bits separately:

ax, bx, cx, dx, bp, sp, si, di, r8w, 19w, rlOw, rllw, 112w, rl3w, rldw, rl5w

we can access the lower 8 bits separately:

al, bl, cl, dl, bpl, spl, sil, dil, r8b, 19b, r10b, rllb, rl12b, rl13b, rldb, rl5b
we can access bits 8-15 separately for some registers:

ah, bh, ch, dh

Example:

bits | 63...56 | 55...48 | 47...40 | 39...32 | 31...24 | 23...16 | 15...8 | 7...0
64 rax
32 eax
16 ax
8 ah al

thirty-one 64-bit registers:

X0, ..., x30

we can access the lower 32 bits separately:
wo, ..., w30

register 31 (x31,w31) is read-only (zero in most cases)

Example:

bits

63...56

55...48

47...40

39...32

31...24

23...16 | 15...8 | T..

.0

64

X0

32

w(

X86_ 64:

idiv ecx
div ecx

e In both cases, registers are treated as integer numbers

e We cannot (directly) access individual bits

e When it matters, the instruction specifies whether the register is signed or not:

AATrch64:

7 9 (signed) sdiv w@, wod, w2 # 1la c2 0c 00 (signed)
7 f1 (unsigned) udiv w@, w@, w2 # la c2 08 00 (unsigned)

Memory

int g(int *a, int *b)

{
return *a + *b;
}
X86_64: AArch64:
g. g:
mov eax, DWORD PTR [rsi] 1dr w2, [x0]
add eax, DWORD PTR [rdi] 1dr w@, [x1]
ret add w@, w2, w0

ret

e From a process’ perspective, memory is seen as a single long array of bytes

(8 bits, treated as a single signed or unsigned integer)

e Like registers, memory can be accessed in larger chunks

(e.g. 16, 32 or 64 bits integer)

e But the smallest addressable unitis the byte

address 0 1 2 3 ... 239 240 241 242 243 244

value (hex) ef cd ab 89 ... ff a0 al a2 a3 42

e the byte at address 240 is (hex) a@ = (decimal) 160
e the byte at address 241 is (hex) al = (decimal) 161
e the byte at address 242 is (hex) a2 = (decimal) 162
e the byte at address 243 is (hex) a3 = (decimal) 163

Q: What is the value of the 32-bit integer at address 2407
A: It depends!

address 0 1 2 3 ... 239 240 241 242 243 244

value (hex) ef cd ab 89 ... ff a0 al a2 a3 42

“big-endian” (BE): 32-bitintat 240is (hex) a®@ al a2 a3
= (decimal) 160 x 2%* + 161 x 216 + 162 x 2% + 163
= (decimal) 2,694,947,491
“little-endian” (LE): 32-bitint at 240 is (hex) a3 a2 al a@
= (decimal) 163 x 2%* + 162 x 216 + 161 x 2% + 160
= (decimal) 2,745,344,416

x86_641is LE
AArch64 is LE by default (LE-only on Windows, MacOS, Linux)

Because we cannot access individual bits on a CPU (smallest chunk is a byte),
bit ordering does not matter here.

However the same problem crops up in other contexts (USB, Ethernet, Wifi, ...)

e |n assembly, accessing memory is denoted using “[” and “]”

= Moving the value 240 into a register:

mov eax, 240 # eax 240
1dr wo, 240 # w@ = 240

= Moving the 4 bytes of memory at address 240 into a register:

mov eax, DWORD PTR [240] # eax
1dr w@, [240] # w0

|
~~~

nex) a3aZalal

|
~~

nex) a3alalal



int g(int *a, int *b)
{
return *a + *b;

}

x86_64: AArcho64:
g. g:
mov eax, DWORD PTR [rsi] ldr w2, [x0]
add eax, DWORD PTR [rdi] ldr w@, [x1]
ret add w@, w2, wo
ret






