Hardware, part 2

Microprocessors

e Logic gate circuits allow us to compute Boolean functions very fast
limited by propagation delay in copper (nanoseconds per meter) and in transistors
(picoseconds)

e Boolean functions can model essentially anything we can compute today.

But

e we cannot design and manufacture a new IC for each algorithm or computing task
e we need many logic gates, even for simple things
~100k transistors for a 64-bit integer division

for context, modern microprocessors have 1-200 billion transistors

— We break down complex algorithms into simple steps.

Logic gates

A clock

Memory

Input and output devices

e Memoryis N bitsz € {0, 1}N (e.g. for 16 GB, N ~ 128 X 10%)

e At every clock cycle (e.g. 1.2 GHz), we update the memory:

r, < fi(x) Vi=20,...,N

e To simplify the model

= Some of the memory comes from input devices

= Some of the memory is sent to output devices

In this model, we update the whole memory at every clock cycle:

e Thatwould be 128 x 10” x 1.2 x 10 = 153.6 x 10'® b/s
~ 19,200, 000, 000 GB/s
e As of 2025, memory maxes out at ~ 800 GB/s

Therefore, we cannot have so many different Boolean functions f;

Instead, at each cycle, the computer executes one of a limited set of instructionsin a
microprocessor. Ex.: “Central Processing Unit” (CPU), “Graphics Processing Unit” (GPU).

Instructions are read sequentially from memory and they can be:

e a memory read / write (a tiny amount, like 512 bits)
e 64-bit arithmetic (+, -, %, /, ...)
e 3 comparison (<, >, =,...)

e abranch (if,while,...) which alters the control flow of instructions

Instruction Set Architectures (ISA)

An ISA specifies:

e How the machine is organized (memory, etc.)

e What instructions are available

e How instructions are encoded into bits

Two major ISAs in practice:

e Xx86_64 (aka. x64,x86 64, AMD64): Intel® and AMD® 64-bit CPUs
e AATrch64 (aka. ARM64): ARM®-based 64-bits CPUs (most phones, Apple M1 - M4)

Many older or less-prominent ISAs:

x86, Itanium, ARMv7, RISC-V, PowerP(C, ...

int f(int a, int b, int c)

{
return (a * b) / c;

}

Xx86_64: AArcho64:
89 f8 89 dl1 0f af c6 99 7 9 c3 1b @1 7c 00 1la c2 0c 00 d6 5f 03 c0
f: f:

mov eax, edi # 89 T8 mul wod, wd, wl # 1b 01 7c 00

mov ecx, edx # 89 dil sdiv w@, w@, w2 # 1la c2 0c 00

imul eax, esi # 0Of af c6 ret # d6 5f 03 c0

cdg # 99

1div ecx # 7 9

ret # c3

T assembly 7

e Assembly is the lowest-level programming language

e Usuallyin 1:1 correspondence with binary encoding of instructions

e Typically, one line perinstruction

mov eax, edi
mov ecx, edx
imul eax, esi

cdq

1div ecx

ret

mov a, b
imul a, b
1div a
cdg

ret

H H H H H H

89 8

89 d1

0f af c6
99

7 9

c3

move
signed integer multiply
signed integer divide

convert double-word (32 bits) to quad-word (64 bits)

return

a<+b
a<—a X b

eax <— eax /b

sign-extend eax into edx:eax

return to calling function

T

mul w@, wod, wl # 1b 01 7c 00
sdiv w@, w@, w2 # 1la c2 0c 00
ret # d6 5f 03 c0

mula,b,c multiply a+b xc
sdiva,b,c signedintegerdivide g « b/c

ret return return to calling function

X86_64:

f:

mov eax, edi
mov ecx, edx
imul eax, esi
cdq

1div ecx

ret

AArch64:

f:
89 T8 mul wo, wo, wl # 1b 01 7c 00
89 dil sdiv w@d, w@, w2 # la c2 @c 00
O0f af c6 Tet # d6 5f 03 c0
99
f7 9
c3

small, fixed set of variables that can be accessec

instantly

16 (x86_64) or 31 (AArch64) general-purpose 64-

DIt registers

plus special registers and flags (not accessible directly)

plus larger registers for extended operations (e.g. non-integer numbers)

sixteen 64-bit registers:

rax, rbx, rcx, xrdx, rbp, rsp, rsi, rdi, r8, r9, ri1e, ri1l, ri12, ri13, rl14, rl15

we can access the lower 32 bits separately:

eax, ebx, ecx, edx, ebp, esp, esi, edi, r8d, r9d, rled, rlld, rl2d, rl13d, rl4d, rl5d
we can access the lower 16 bits separately:

ax, bx, cx, dx, bp, sp, si, di, r8w, 19w, rlOw, rllw, 112w, rl3w, rldw, rl5w

we can access the lower 8 bits separately:

al, bl, cl, dl, bpl, spl, sil, dil, r8b, 19b, r10b, rllb, rl12b, rl13b, rldb, rl5b
we can access bits 8-15 separately for some registers:

ah, bh, ch, dh

Example:

bits | 63...56 | 55...48 | 47...40 | 39...32 | 31...24 | 23...16 | 15...8 | 7...0
64 rax
32 eax
16 ax
8 ah al

thirty-one 64-bit registers:

X0, ..., x30

we can access the lower 32 bits separately:
wo, ..., w30

register 31 (x31,w31) is read-only (zero in most cases)

Example:

bits | 63...56 | 55...48 | 47...40 | 39...32 | 31...24 | 23...16 | 15...8 | 7...0
64 X0
32 w(

X86_64:

idiv ecx
div ecx

e In both cases, registers are treated as integer numbers

e We cannot (directly) address individual bits

e When it matters, the instruction specifies whether the register is signed or not:

AArch64:

7 9 (signed) sdiv w@, wd, w2 # 1la c2 0c 00 (signed)
7 f1 (unsigned) udiv w@, w@d, w2 # 1la c2 08 00 (unsigned)

Memory

int g(int *a, int *b)

{
return *a + *b;
}
X86_64: AArch64:
g. g:
mov eax, DWORD PTR [rsi] 1dr w2, [x0]
add eax, DWORD PTR [rdi] 1dr w@, [x1]
ret add w@, w2, w0

ret

e From a process’ perspective, memory is seen as a single long array of bytes

(8 bits, treated as a single signed or unsigned integer)

e Like registers, memory can be accessed in larger chunks

(e.g. 16, 32 or 64 bits integer)

e But the smallest addressable unitis the byte

address 0 1 2 3 ... 239 240 241 242 243 244

value (hex) ef cd ab 89 ... ff a0 al a2 a3 42

e the byte at address 240 is (hex) a@ = (decimal) 160
e the byte at address 241 is (hex) al = (decimal) 161
e the byte at address 242 is (hex) a2 = (decimal) 162
e the byte at address 243 is (hex) a3 = (decimal) 163

Q: What is the value of the 32-bit integer at address 2407
A: It depends!

address 0 1 2 3 ... 239 240 241 242 243 244

value (hex) ef cd ab 89 ... ff a0 al a2 a3 42

“big-endian” (BE): 32-bitintat 240is (hex) a®@ al a2 a3
= (decimal) 160 x 2%* + 161 x 216 + 162 x 2% + 163
= (decimal) 2,694,947,491
“little-endian” (LE): 32-bitint at 240 is (hex) a3 a2 al a@
= (decimal) 163 x 2%* + 162 x 219 + 161 x 2% + 160
= (decimal) 2,745,344,416

x86_641is LE
AArch64 is LE by default (LE-only on Windows, MacOS, Linux)

address ... 244 243 242 241 240 239 ... 3 2 1 0

value(hex) ... 42 a3 a2 al a0 ff ... 8 ab cd ef

Because we cannot address individual bits on a CPU (smallest chunk is a byte),
bit ordering does not matter here.

However the same problem crops up in other contexts (USB, Ethernet, Wifi, ...)

e |n assembly, accessing memory is denoted using “[” and “]”

= Moving the value 240 into a register:

mov eax, 240 # eax = 240
1dr wo, 240 # w@ = 240

= Moving the 4 bytes of memory at address 240 into a register:

mov eax, DWORD PTR [240]1 # eax = (hex) a3a2alal
ldr w@, [240] # w@ = (hex) a3a2ala®

int g(int *a, int *b)
{
return *a + *b;

}

x86_64: AArcho64:
g. g:
mov eax, DWORD PTR [rsi] 1dr w2, [x0]
add eax, DWORD PTR [rdi] ldr w@, [x1]
ret add w@, w2, wo
ret

