Software

Compilation

A compiler:

e reads source code,
e forms chunks of
» data (constants, initial values for global variables)
s executable machine code (functions)
e associates a symbol to each chunk (variable or function name)

e writes all into an “object” (“.0”) file (format: ELF, COFF, Mach-0)

The compiler leaves blank all references to symbols
(incl. external symbols like global variables and global functions)

Example:

#include <stdio.h>

int the_number

int main()

{

_1'

scanf("%d", &the_number) ;
return 0;

OBJECT GLOBAL DEFAULT

0000000000000000
0: 48 83 ec
4: be 00 00
9: bf 00 00
e: 31 cO
10: e8 00 00
15: 31 cO
17: 48 83 c4
1b: c3

the_number

<main>:

08 sub

00 00 mov

00 00 mov
X0TY

00 00 call
X0

08 add
ret

rsp,0x8
esi,0x0
edi, 0x0
eax,eax
15 <main+@x15>
eax,eax
rsp,0x8

A linker reads “object” files and writes an executable file.

e it assigns a position in memory to every chunk of code and data

e it setsthe value of the corresponding symbol to this position

e it resolves all references to symbols:

replaces all references with the numeric value of the corresponding position in memory

Example:

#include <stdio.h>
int the_number = -1;
int main()

{

scanf("%d", &the_number);
return 0;

54: 000000000040400cC 4 OBJECT GLOBAL DEFAULT 24 the_number
63: 0000000000401040 28 FUNC GLOBAL DEFAULT 14 main

0000000000401040 <main>:

401040 48 83 ec 08 sub rsp,0x8

401044 : be 0c 40 40 00 mov esi,0x40400c

401049: bf 10 20 40 00 mov edi, 0x402010

40104e:. 31 cO X0r eax, eax

401050 e8 db ff ff ff call 401030 <__1s0c99_scanf@plt>
401055 31 cO X0Y eax,eax

401057 : 48 83 c4 08 add rsp,0x8

40105b: c3 ret

e Static linking is performed in order to prepare an executable (. exe, ...) file.
e Dynamic linking is performed every time the executable is run
s Object files built to be dynamically linked are called

o shared objects (. so, Linux, MacOS), or

o dynamically-linked libraries (. d11, Windows)
» Typically used for
o System libraries

o Plugins

e Separate linking simplifies compilations
(allows the compiler to write code using functions and variables it has not seen yet)
e |t allows us to break down our code into multiple files...
s that can be compiled separately
e |t allows using code written and compiled by other people
= saves time
= |ets us use closed-source software
e Dynamic linking allows us to use system libraries without shipping them
e |t reduces the size of executables

e |t helpsin masking some system incompatibilities

(e.g. run the same .exe on Windows 10 and 11)

e |t allows updating system libraries separately

e The compiler does not know the code inside external object files

= it cannot check for mistakes based on that knowledge

= it cannot optimize code based on that knowledge (at least for dynamic linking)
e Dynamically-linked libraries add complexity

(separate installation, incompatible versions, etc.)

Libraries are collections of functions (and data) that can be used by different executables

Examples:
o : read/write jpeg files
o : cryptography
° : fast vector and matrix operations

e 1 :cross-platform GUI toolkit

Most languages have a

e Distinct from the language itself, but usually necessary in any program
e The Clanguage provides no functions.
(All basic utilities (strlen, printf, exit) come from the standard library.)

e |tis normally dynamically linked

int main()

{
int r = 0;
for (int 1 = 0; 1 < 1000000;
r =1r + 2;
return r;
}

0000000000401020 <main>:
401020 b8 80 84 l1le 00
401025 c3

1++)

mov
ret

eax,0x1e8480 # <-- 2,000,000

“Optimal” = “best”

“Optimizing” = “going towards the best possible result”

Do not say: “| made my code more optimal”

Do say: “l optimized my code some more”

or “I made my code better”

Operating Systems

The operating system (OS) manages the computer and provides services to applications.

Components:

e The kernel handles:
» most of the boot process (what happens upon power on)
= memory allocation and sharing
= input/output devices, through “drivers” (often dynamically loaded)

= application coexistence and cooperation

e Optionally:
o for some languages (C, C++, .NET, Swift, ...)
= Some additional common
» User interface (Ul): command-line (CLI), graphical (GUI)

» Some tools: CLI utilities, compilers, settings/configuration apps

Popular OSs:

e Windows
e MacOS, iOS (base OS: Darwin, kernel: XNU)

e Android (kernel: Linux)

Other current OSs:

e SteamOS, Debian, Ubuntu, Suse, Fedora, Arch, RHEL, AL2 (base OS: GNU, kernel: Linux)
e OpenWrt (base OS: BusyBox, kernel: Linux)

e FreeBSD, OPNsense, TrueNAS, pfSense (base OS & kernel: FreeBSD)

e OpenBSD

All the above except Windows are descendants from “Unix”

FILE *f = fopen("my_file.txt", "r");

On my system:
e fopen() is part of the
e fopen() calls Unix-specific open(), also in the
e open() is awrapper for the open system call in the Linux kernel

open("my_file.txt", O_RDONLY);
mov rdi, 0x402010 # pointer to "my_file.txt"

mov rsi, Ox0 # O_RDONLY == 0
mov rax, 2 # open 1s syscall #2
syscall

e the Linux kernel uses its filesystem and SSD drivers to open the file
e it returns a file descriptor (int)

e fopen() allocates a structure with buffers and the file descriptor, returns it

the processor only does elementary operations (move 64-bit to/from memory)

the kernel implements basic functionality (managing devices, reading data from a file)

the provides more, OS-independent functionality (buffering, parsing data)

other may allow even more (e.g. decompressing a video file)

Virtualized memory

Recall this example:

#include <stdio.h>

int the_number

int main()

{

_1'

scanf("%d", &the_number);

return 0;

54: 000000000040400cC

63: 0000000000401040

0000000000401040 <main>:

401040

401044 :
401049:
40104e .
401050
401055
401057 :
40105b:

48
be
bf
31
e8
31
48
c3

83
0c
10
cO
db
cO
83

ec
40
20
ff

c4

4 OBJECT GLOBAL DEFAULT 24 the_number

28 FUNC

08
40 00
40 00
ff ff

08

GLOBAL DEFAULT 14 main

sub
mov
mov
X0
call
X0
add
ret

rsp,0x8

esli,0x40400c

edi,0x402010

eax, eax

401030 <__isoc99_scanfeplt>
eax, eax

rsp,0x8

e every process sees memory as if it was alone

e every time a process accesses memory,

the hardware translates the virtual address into a hardware address

e the translation uses a page table managed by the kernel

Page table (managed by the kernel):

page virtualaddress hardware address

#0 0 - 4095 65536 - 69631
#1 4096 - 8191 20480 - 24575
#2 8192 - 12287 4096 - 8191
x86_64 # AArch64
mov eax, DWORD PTR [4100] ldr w@, [4100]

e the processor looks up virtual address 4100 in the page table
e itfinds page #1, base 4096, plus offset 4
e page #1 has hardware address 20480

e the memory access is at hardware address 20480 + 4 = 20484

e the page table itself is in memory!

e at aspecific hardware address

e various techniques to make page lookup faster (it is a tree, with a cache)

the kernel finds free hardware addresses (unused by any process)
for the virtual addresses:

» either the process requests specific virtual addresses

» or the kernel finds free virtual addresses (unused by this process)
the kernel adds suitable entries in the page table

the kernel returns the virtual address to the process

cons:

e slow!

e memory sharing between processes must be (initially) mediated by the kernel
Pros:

e simplifies memory management for the process

e enables process isolation (a process cannot snoop on or crash another)

e enables fast move for large chunks of memory (just update the page table)
e allows fast input/output on devices
(non-memory devices can be mapped to virtual addresses)
e allows extending memory:
= using storage devices (“swap”)
= USing compression

= using overcommit

Stack

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80

N\

f1(): allocate 2 x uinté4_t

void fl(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b

f1(): call f2

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b R

f2(): allocate 1 x uint64_t

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b R <

f2(): call f3()

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b R ¢ R

f3(): return (to f2())

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b R <

f2(): return (to f1())

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b

f1(): call f3()

void fl(void) void f2(void)
{ {

uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

}
int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b R

f3(): return (to f1())

void fl(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80
a b

f1(): return

void fl(void) void f2(void)

{ {
uint64_t a, b; uint64_t c;
f2(); 3(),;
3(); }

int f3(void)
{
}

16 24 32 40 48 56 64 72 80

Back to 1nitial state

x86_64: rsp (by convention - rsp is a general register)
AArch64: sp (mandatorily - sp is a special register)

n both cases, the stack actually grows downwards

Default stack size on Linux;: 8 MB

» theoretical max recursion depth (best case): 1,000,000

People used to refer to all memory that is not on stack as “the heap”.

e Not to be confused with a heap data structure.

e The term “the heap” was more relevant when it designated a single contiguous block of

virtual addresses.

e Nowadays, OSs offer more flexibility for memory allocation.

