
LECTURE 8

1

REGULAR EXPRESSIONS

2

Definition
Regular expressions are a mini-language for text pattern matching.

3

Example
Q: Find all occurences of the word “memory” in the files in this directory.

grep 'memory' *

4

MATCHING

5

The grep command

grep [OPTION...] PATTERNS [FILE...]

Options:

-E: “extended” regular expressions (we will use this syntax)

-R: recursive (if a directory is given, look all files in it, incl. subdirectories)

-i: case insensitive (a same as A)

Patterns:

Use single-quotes (') to avoid shell interference

Files:

if no file provided, grep reads its (piped) input

6

Piping to grep
Q: Find all files in the current directory whose name contains the letter L

ls | grep -E -i `L`

7

Introduction to regular expressions
by default, patterns are looked for line-by-line

strings of “normal” characters are matched

grep -E 'memory' *

8

Anchors
the ^ character at the beginning of a regex matches the beginning of a line

the $ character at the end of a regex matches the end of a line

Examples:

grep -E '^int' *

grep -E ' $' *

9

Repetitions
? indicates that the previous character may or may not occur (once)

* indicates that the previous character may occur zero or more times

+ indicates that the previous character may occur one or more times

{4} indicates that the previous character must occur 4 times

{4,} indicates that the previous character must occur 4 or more times

{4,8} indicates that the previous character must occur between 4 and 8 times

Examples:

grep -E 's?printf' *

grep -E '^ *print' *

grep -E '0b0+' *

grep -E 'e{2,}' *

10

Grouping
Any part of a regex can be grouped using parentheses.

Repetitions then apply to the group instead of a single character.

Examples:

grep -E '(Abc)+' # matches 'Abc', 'AbcAbc',

'AbcAbcAbc', ...

11

Match any character
The dot (“.”) matches any character:

Examples:

grep -E 'X.Y' # matches 'XaY', 'XbY', 'X+Y',
...

grep -E 'X.*Y' # matches 'XabcY', 'X+-*/Y',
...

12

Bracket expressions
One character can be matched to multiple options using square brackets:

grep -E '[abc]XY' # matches aXY or bXY or cXY
grep -E '0b[01]+' # matches binary numbers

We can express ranges of characters using a dash:

grep -E '[0123456789]+' # matches decimal numbers
grep -E '[0-9]+' # ^ equivalent
grep -E '0x[0-9a-fA-F]+' # matches hexadecimal numbers
grep -E '[A-Z][a-z]*' # matches words that start with a capital letter

Bracket expressions are negated if the first character is ^:

grep -E '[^s]printf' # matches " printf", "aprintf" ... but not
"sprintf"

13

Disjunctions
Multiple options can be given using the “|” character:

grep -E 'system_(startup|shutdown)' # matches "system_startup" or
"system_shutdown"

14

Special characters
Special characters can be “escaped” using a backslash (“\”):

grep -E 'printf\(.*\)' # matches "printf("Hello %s", name)"

15

Using regular expressions in less
Searching for patterns in the less pager is performed by typing “/”.

Patterns are specified using regular expressions

16

SEARCH AND REPLACE: sed

17

sed [OPTION...] SCRIPT [FILE...]

Options:

-E: “extended” regular expressions (we will use this syntax)

-i: edit file in-place (instead of printing)

Script: Use single-quotes (') to avoid shell interference

Files: if no file provided, sed reads its (piped) input

18

Basic search and replace

sed -E 's/REGEX/REPLACEMENT/'

Examples:

sed -E 's/python/Python/' # replace "python" with "Python"
sed -E 's/printf\(/fprintf\(stderr, /' # replace "printf(a)" with "fprintf(stderr, a)"

Allow multiple replacements per line:

sed -E 's/REGEX/REPLACEMENT/g' # g stands for global

Use delimiter different from “/”:

sed -E 's|REGEX|REPLACEMENT|'
sed -E 's_REGEX_REPLACEMENT_'

19

Advanced search and replace
In the replacement string, \1 indicate the first parenthesized group, \2 the second, etc.:

replace "Hello, World!" with "Bye, World!"

sed -E 's/Hello, ([A-Za-z]*)!/Bye, \1!/'

Groups are numbered in the order of the opening parentheses from the le�:

sed -E 's/(a(b|z)+)(c+)/{\1}{\3}/g'

^ ^ ^

1 2 3

20

REGULAR EXPRESSIONS IN
PROGRAMMING LANGUAGES

21

Using regular expressions in C

See: man regex

#include <stdio.h>
#include <regex.h>

int main()
{

regex_t re;

// REG_EXTENDED: POSIX extended regular expression
// REG_NOSUB: do not report position of matches
if (regcomp(&re, "0x[0-9a-fA-F]*", REG_EXTENDED | REG_NOSUB)) {

error();
return 1;

}

int r = regexec(&re, "Does this contain a hex number, like 0xff ?", 0, NULL, 0);

if (r == 0) {
printf("Found\n");

} else if (r == REG_NOMATCH) {
printf("Not found\n");

}

regfree(&re);

return r;
}

22

Using regular expressions in Python
>>> import re
>>> m = re.search(r'0x[0-9a-fA-F]*', 'Does this contain a hex number, like 0xff ?')
>>> m.group(0)
'0xff'

> documentation

23

https://docs.python.org/3/library/re.html

24

