Portability

Application binary interfaces (ABI)

e most Windows laptops, Linux laptops and pre-M1 Macs share the same ISA: x86_64

e iPhones, Android phones, M1 to M4 Macs share the same ISA: AArch64

Q: Why, then, do applications need to be recompiled separately for each platform?
e.g. iPhone vs. Android phone

A: Because platforms have different OSs and ABIs.

An application binary interfaces (ABI) defines:

e file format for
= object files
» dynamically-linked files (shared objects / dll)
= and executable files

e convention for function calls

e convention for system calls

It is called binary because it is independent of the language in which applications are written
(i.e. it is related to the machine code, not to the source code)

#include <stdio.h>

int

{

main()

puts("Hello\n");
return 0;

clang / Linux / x86_64

main:

L.str:

push
lea
call
X0T

Pop
ret

.asciz

rax

rdi, [rip + .L.str]
puts@PLT

eax, eax

rcx

"Hello\n"

MSVC / Windows / x86_64

_DATA
$5SG9391
_DATA

main
$LN3:

main

SEGMENT

DB 'Hello', ©@aH, 0OH
ENDS

PROC

sub rsp, 40

lea rcx, OFFSET FLAT:$SG9391
call puts

XOT eax, eax

add rsp, 40

ret 0

ENDP

#include <stdio.h>

int

{

main()

puts("Hello\n");

return 0;
}
clang / MacOS / AArch64

main:
stp x29, x30, [sp, #-16]!
mov X29, sp
adrp X0, .L.str
add X0, x0, :1ol2:.L.str
bl puts
mov wl, wzr
1dp x29, x30, [sp], #16
ret

.L.str:
.asciz "Hello\n"

MSVC / Windows / AArch64

|[main|
| $LN3 |

IMPORT

PROC

stp
mov
adrp
add
bl
mov
1dp
ret

ENDP

|puts |

fp,lr, [sp,#-0x10]!
fp,sp

x8, | $5G4901 |
X0,x8, | $5G4901 |
puts

wo , #0

fp,lxr, [sp],#0x10

Try it for yourself:
godbolt.org

https://godbolt.org/z/jfM964716

int function(int al, int a2, int a3, int a4, int a5, int a6, int a7)

{

| etum ay;
platform al a2 a3 a4 a5 a6 a7 a8 ... returnvalue
AArch64 x0 x1 x2 X3 x4 X5 X6 X7 (stack) X0
“SysV”x86_64 rdi rsi rdx rcx r8d r9d (stack) (stack) (stack) rax
Windows x86_64 rcx rdx r8d r9d (stack) (stack) (stack) (stack) (stack) rax

Note: floating-point parameters are passed separately

SysV x86_64 ABI: repo, pdf
AArch64 ABl: repo

Linux-specific stuff: documents

Remarks:

e OSvendors may or may not adhere to the ABI spec of the hardware:
= Microsoft Windows does their own thing on x86_64
= MacOS follows AArch64 calling convention,
but uses Mach-O (not ELF) as an object file format
e Some part of the ABI may be defined by OS vendors
(e.g. system call convention)
e The ABl is language-independent,
but the C language (sometimes C++ as well) has a special status

The ABI is defined in terms of C function calls and C datastructures.

https://gitlab.com/x86-psABIs/
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://github.com/ARM-software/abi-aa/releases
https://refspecs.linuxfoundation.org/

Portable code

How do we ship code that work across all platforms?

e useinterpreted languages, ship source
= Python, Javascript, ...
e languages that compile to virtual machine code
= ship VM code
= optionally, ship VM interpreter
= Java, C#

e compile one executable on each platform

e in some cases, cross-compilation is possible
= MacOS — I10S
= Linux — Android

What if we cannot (or do not want to) recompile?

Use case: same OS, different ISA

e Translation is a form of compilation
e From machine code

e To machine code (of a different ISA)

Example: Apple Rosetta 2 translates x86_64 into AArch64

Use case: different OSs, same ISA

e add OS support for a foreign ABI
» foreign file formats (for objects, DLLs and executables)
» foreign convention for system calls

e add libraries for foreign ABI

s foreign convention for function calls

Examples:

e Wine allows running Windows apps on Linux.

e WSLv1 allows running Linux apps on Windows.

an emulatoris an interpreter for machine code (e.g. QEmu)
much slower than running the code
JIT can mitigate slowness, to some extent

typically, a full-blown operating system runs inside the interpreter!

A n @ tuxstation:)...-Qemu/ReactD s -Oemu & v |2

sndtuxstation:™r od os/Beact(5-0emy /Feact05-Demy’
srfltuxskation: ™ es/Resct0S-0enu/React0S-0em> qemu ~hda c.img -n 256

~ OEMU

0| x

IHADUTATDLE
e

& IRATUTALDLE

)

r-'l':.'
Computer
[T (o=228)

i Reactos Explores
—1 File View Window Tools Help
| a0 BR800 || @ewore = shel

=1oj x|
_ngl
W, NT Obj |

o

Command
Frompt

3 Web

| = ma

=i

Lystem32

lake bmp

Bin

inf

Wolu

L 1|

explorer.

E &
W

cxplorer

§ in drive C has no label.
Volume Serial Humber 1s 933

Tt
LY [l BT

. regedit. s

filefrCAy

B command Prompt L} Reactos Explorer

_ xm{anﬁmmaﬂnni..-ﬂemum- s The GIMP

/ ¥ gEMu

:mi:wﬁmmaliun

.n'mmthﬂ...mmmu Y Al AR

snltusstation:™r od oz /ResctS-Demu/React 05— (am’
srlituxskation:”Ses/Resct0S-0enu/Resct0S-0em> qemu ~hda c.img -n 256

2 [T/ LDLE
————|

REEAIL” +1DLE
IHTs C(o=228>

1 Kstﬂanﬂmmaunni..-nemumw = The GIMP

W qemu

oA EH

=]

x

ﬁ:mi:wﬁmﬂaliun

da@a@

5:0
Freimy | B

1o

My
C omputer

Command
Frompt

i Reactos Explores

—1 File Miew Window Tools Help

@m0 2_B 0 || @ewore = shel

9 Web

W, NT Obj |

| =mn

=i

Bin

filefrCAy

system32

L ||

explorer .

r'g‘-"r
e

explorer....

lake bmp

WYolume in drive C has no label.

Wolume

B command Prompt

Serial Number 1s 933E-20€

Directory of C:\FRe:

[} Reactos Explorer

20

e virtualization is essentially hardware-assisted emulation

(e.g. Xen, KVM, VirtualBox, VMWare, Apple Parallels, WSLv2)

e virtualized software must target the same ISA as hardware

e like emulation, runs a full-blown operating system

@ Windews 10 far ARM insiders .,

Filg

Edit Wiew Actions Devices Develop Window Halp

Windows 10 for ARM Insider Freview

P’ IT'!.uE here to 4earch

(%

B m o T a5 0O O

Host OS

@ Windows 10 Tor ARM Inaidee ., Fils Edit Wiew Actions Duvices Dwwslop Windew Halp

L 2COLUDNURSE@:

(i

Il B =m 8 = Q4 § @ @

Guest OS

Windows 10 for ARM Insider FPrewview

e The hypervisor is the software that manages the guest OS.

e [t can bethe host OSitself (“Type 1”: Xen, KVM)

e |t can be a process within the host OS (“Type 2”7: Apple Parallels)

Virtualization mainly deals with security:
Let guest OSs believe they have direct access to hardware...

... but every hardware access is tightly controlled by the hypervisor

Virtualization is the main technology enabling “cloud computing”.

e Amazon Web Services runs Xen

e Google Cloud Platform runs KVM

e Customers rent a virtual machine in a datacenter
» They can connect (remotely) to this machine

|t runs their (guest) OS of choice

» |t acts as if it was physical hardware

Use case: Same ISA, same kernel, different OS.

e Containers are a lightweight form of virtualization.
e The host’s kernel also acts as a kernel for the guest.

e Mainly: filesystems, libraries and applications are separated.

Examples:

e ADebian Linux guest on a Fedora Linux host
e ADebian 11 Linux guest on a Debian 12 host

e ADebian 12 guest with specific libraries installed, on a Debian 12 host

Application programming interfaces (API)

An APl defines how a library (or any other service) is to be used.

FILE *fopen(const char *path, const char *mode);

open(file, mode='r', buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

GET https://www.google.com/search?qg=<query>

Example:

google-chrome https://www.google.com/search?g=Software%20Engineering

GET https://cloudflare.com/cdn-cgi/trace

Example:

curl -4s "https://cloudflare.com/cdn-cgi/trace"

PUT https://api.cloudflare.com/client/v4/zones/{zone_identifier}/dns_records/{identifier}

Example:

curl --request PUT \
--url https://api.cloudflare.com/client/v4/zones/zone_identifier/dns_records/identifier \
--header 'Content-Type: application/json' \
--header 'X-Auth-Email: ' \

--data '{

"content": "198.51.100.4",

"name": "example.com",

"proxied": false,

"type": "A",

"comment": "Domain verification record",
"tags": [

"owner:dns-team"

1,
"ttl": 3600

e many APIs are cross-platform
» Cstandard library
= Almost all Python modules
s Qt, Electron, Flutter, ... (frameworks for GUIl applications)
= WEB APIs only depend on an internet connection
e some are specific to a platform

= Windows Ul Library, MacOS Cocoa

Dependencies

e your code requires libA version >=1.1, lib B version >=4.5

ib B version 4.5 requires

ib B version 4.7 requires

ib B version 4.6 requires

oX version 2.0 anc

oX version 2.0 anc

oX version 2.0 anc

= |ib X version 2.0 requires libA version <=1.9

How do we install all this?

Which version do we install?

0A version 0.8

nA version 1.1

A version 2.0

Package managers solve this problem for you.

They can solve it...

e at the OS level:
= MacOS: brew install <package>

» Debian/Ubuntu Linux: apt-get install <package>

» Fedora/Suse Linux: dnf install <package>
e atthe language level:

= Python: pip install <module>

» JavaScript/Node: npm install <package>

= Rust: cargo install <crate>

e package selection may be limited (packaging is labor-intensive)

e security and trust

