
Version control systems

1

Version control systems

2

Assume you have a project:

myproject.py

You would like to try a modification, but do not know if it will work.

mkdir versions/
mkdir versions/v1/
cp myproject.py versions/v1/

Result:

myproject.py

versions/

v1/

myproject.py

3

You proceed to modify myproject.py:

myproject.py <-- modified

versions/

v1/

myproject.py

If you like the modification and want to commit to it:

mkdir versions/v2/
cp myproject.py versions/v2/

Otherwise, you revert to the old version:

cp versions/v1/myproject.py myproject.py

4

If we committed to the modification:

myproject.py <-- same as "versions/v2/myproject.py"

versions/

v1/

myproject.py

v2/

myproject.py

5

Use cases

try things

determine when a bug was introduced

multiple people working on a project

6

Version control systems (VCS) / source code management (SCM)

Revision control system (RCS), 1982

Concurrent versions system (CVS), 1986

Apache Subversion (“SVN”), 2000

Mercurial (“Hg”), 2005

Used internally at Facebook/Meta

Piper (not public)

Used for internal monorepo at Google

Git, 2005

Spawned large hosting industry

(GitHub USD 7.5bn 2018, GitLab market cap USD 8.29bn)

Used internally at Microsoft, Amazon

7

Git

8

Git fundamentals

a repository stores the complete history of a project

versions/ .git/

a commit is a unit of change; it captures:

a snapshot of all the project files

an author, a date, …

an indication of the “parent commit” (the one it is based on)

commits are designated by v1/ a hash

→

9

Hashes

A hash maps any sequence of bits to a fixed-length bit string

The map is not injective
bit strings hashes

a
bc

d

1

2

“SHA-1”: 160 bits / 20 bytes / 40 hex digits

Example: 1e6cac37c5c8c5ee99ec104954d09b07e96116ba

Git assumes SHA-1 is injective

… and is currently migrating to SHA-256 (256 bits / 32 bytes / 64 hex digits)

10

Hashes in Git

Git commits are designated by SHA-1 hashes

Example: 1e6cac37c5c8c5ee99ec104954d09b07e96116ba

When referring to a commit, a hash prefix can be used if unambiguous

Example: 1e6cac

11

Git command-line interface

General usage:

git <command> [<arguments...>]

Example: git status

Getting help:

git help <command>

Example: git help status

man git-<command>

Example: man git-status

12

Configuration

For anything too long for the CLI, git will make you edit a temporary file:

Commits capture the author’s name and email address:

git config --global core.editor "code --wait"

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

13

Creating a repository

14

Creating a new project:

“Cloning” an existing project:

mkdir my_new_project/
cd my_new_project/
git init

my_new_project/
.git/

...

git clone
https://github.com/ggerganov/llama.cpp.git

cd llama.cpp/

llama.cpp/
.git/

...
ggml-alloc.c
ggml-alloc.h
...

15

Building a commit

16

Working tree, staging, commit

We never access the content of .git/ directly

Instead, we modify files in the working tree (everything not in .git/)

We can ask git to “check out” any past commit into the working tree

(i.e., make the working tree reflect that commit)

In order to prepare a new commit, we “stage” the relevant modifications
(i.e., we tell git which files we want part of the new commit)

Once ready, we create the new commit, along with a commit message

17

Staging and committing example

We create

new_file_A.py

new_file_B.py

new_file_C.py

We stage new_file_A.py and new_file_B.py:

We commit them to the repository

git add new_file_A.py new_file_B.py

git commit -m "My first commit."

18

Listing past commits

git log

commit 6ea8433cf989c7c8580194035c7871b7de3c7c08 (HEAD -> main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

19

working tree staging area commits

(stored inside .git/ directory)(all other directories)

20

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_B.py

new_file_C.py

(creating new_file_A, new_file_B, new_file_C)

21

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_B.py

new_file_C.py

new_file_A.py

new_file_B.py

git add new_file_A.py new_file_B.py

22

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_B.py

new_file_C.py

new_file_A.py

new_file_B.py

6ea843 My first commit
new_file_A.py

new_file_B.py

git commit -m "My first commit."

23

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_B.py

new_file_C.py

new_file_A.py

new_file_B.py

6ea843 My first commit
new_file_A.py

new_file_B.py

24

Automatic adding

Add multiple files at once using a pattern (including in subdirectories):

Add all the files in the working tree:

Exclude some files from “git add -A”:
Put corresponding patterns in “.gitignore”:

git add '*.py'

git add -A

*.o
/build/
/my_executable

25

Observing the state of the working tree and staging area

git status

On branch main
Untracked files:
(use "git add <file>..." to include in what will be committed)

new_file_C.py

nothing added to commit but untracked files present (use "git add" to track)

Let us modify new_file_A.py:

git status

On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: new_file_A.py

Untracked files:
(use "git add <file>..." to include in what will be committed)

new_file_C.py

no changes added to commit (use "git add" and/or "git commit -a")

26

Showing differences

git diff

diff --git a/new_file_A.py b/new_file_A.py
index e69de29..ec7780c 100644
--- a/new_file_A.py
+++ b/new_file_A.py
@@ -0,0 +1 @@
+print('Hello, world!')

27

Staging again

git add -A

git status

On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: new_file_A.py
new file: new_file_C.py

28

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_B.py

new_file_C.py

new_file_A.py

new_file_B.py

6ea843 My first commit
new_file_A.py

new_file_B.py

(previous state after first commit)

29

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py

new_file_A.py

new_file_B.py

(modifying new_file_A)

30

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py new_file_C.py

new_file_B.py

new_file_A.py

git add -A

31

Showing differences again

git diff

git diff --staged

diff --git a/new_file_A.py b/new_file_A.py
index e69de29..ec7780c 100644
--- a/new_file_A.py
+++ b/new_file_A.py
@@ -0,0 +1 @@
+print('Hello, world!')
diff --git a/new_file_C.py b/new_file_C.py
new file mode 100644
index 0000000..e69de29

32

Committing again

git commit -m "My second commit."

git log

commit 31a05126a56b8156de47ee53092b6996d75a0c8c (HEAD -> main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:15:19 2023 +0200

My second commit.

commit 6ea8433cf989c7c8580194035c7871b7de3c7c08
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

33

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py new_file_C.py

new_file_B.py

new_file_A.py

(previous state after "git add -A")

34

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py new_file_C.py

new_file_B.py

new_file_A.py

new_file_B.py

new_file_C.py

31a051 My second commit

new_file_A.py

git commit -m "My second commit."

35

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py new_file_C.py

new_file_B.py

new_file_A.py

new_file_B.py

new_file_C.py

31a051 My second commit

new_file_A.py

36

Checking out specific commits

git checkout 6ea843

git log

commit 6ea8433cf989c7c8580194035c7871b7de3c7c08 (HEAD)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

git log --all

commit 31a05126a56b8156de47ee53092b6996d75a0c8c (main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:15:19 2023 +0200

My second commit.

commit 6ea8433cf989c7c8580194035c7871b7de3c7c08 (HEAD)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

37

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py

new_file_C.py new_file_C.py

new_file_B.py

new_file_A.py

new_file_B.py

new_file_C.py

31a051 My second commit

new_file_A.py

38

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py new_file_B.py

new_file_A.py

new_file_B.py

new_file_C.py

31a051 My second commit

new_file_A.py

git checkout 6ea843

39

working tree staging area commits

(stored inside .git/ directory)(all other directories)

new_file_A.py

new_file_A.py

new_file_B.py

6ea843 My first commit

new_file_B.py new_file_B.py

new_file_A.py

new_file_B.py

new_file_C.py

31a051 My second commit

new_file_A.py

40

Branches

41

Commit structure

31a051 ("My second commit.")
ᐱ

|
6ea843 ("My first commit.")

42

git checkout 31a051 # "My second commit"

31a051 ("My second commit.") ᐸ-- HEAD
ᐱ

|
6ea843 ("My first commit.")

git checkout 6ea843 # "My first commit"

31a051 ("My second commit.")
ᐱ

|
6ea843 ("My first commit.") ᐸ-- HEAD

43

modify some files
git add -A
git commit -m "Another commit."

31a051 ("My second commit.") 07714c ("Another commit.") ᐸ-- HEAD
ᐱ ᐱ
| |

6ea843 ("My first commit.")

44

git log --all --graph

* commit 07714cbadc8f13939039c07ac4b063d8b9b92506 (HEAD)
| Author: Laurent Poirrier <poirrier@dev>
| Date: Fri Sep 29 03:06:02 2023 +0200
|
| Another commit.
|
| * commit 31a05126a56b8156de47ee53092b6996d75a0c8c (main)
|/ Author: Laurent Poirrier <poirrier@dev>
| Date: Fri Sep 29 02:15:19 2023 +0200
|
| My second commit.
|
* commit 6ea8433cf989c7c8580194035c7871b7de3c7c08
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

45

Problem: if we “git checkout” back to the first or second commit, we lose “Another commit.”

Solution: named branches

46

Creating branches

git branch <branch-name>

47

(initial state after two commits)

HEAD, main --> 31a051 ("My second commit.")
ᐱ

|
6ea843 ("My first commit.")

48

git checkout 6ea843

main --> 31a051 ("My second commit.")
ᐱ

|
HEAD --> 6ea843 ("My first commit.")

49

git branch my_branch

main --> 31a051 ("My second commit.")
ᐱ

|
HEAD --> 6ea843 ("My first commit.") <-- my_branch

50

git checkout my_branch

main --> 31a051 ("My second commit.")
ᐱ

|
6ea843 ("My first commit.") <-- HEAD, my_branch

51

git add ...; git commit

main --> 31a051 ("My second commit.") 07714c ("Another commit.") ᐸ-- HEAD, my_branch
ᐱ ᐱ
| |

6ea843 ("My first commit.")

52

Merging

git checkout main

HEAD, main --> 31a051 ("My second commit.") 07714c ("Another commit.") ᐸ-- my_branch
ᐱ ᐱ
| |

6ea843 ("My first commit.")

53

git merge my_branch

HEAD, main --> 81db75de ("Merge remote-tracking branch")
ᐱ ᐱ
| |

31a051 ("My second commit.") 07714c ("Another commit.") ᐸ-- my_branch
ᐱ ᐱ
| |

6ea843 ("My first commit.")

54

Merge conflicts

resolve merge conflicts by editing files

git add ... ; git commit

<<<<<<< HEAD:new_file_A.py
print('Hello, world!")
=======
print('Bye, world')
>>>>>>> my_branch:new_file_A.py

55

Rebase

(just committed to branch my_branch)

main --> 31a051 ("My second commit.") 07714c ("Another commit.") ᐸ-- HEAD, my_branch
ᐱ ᐱ
| |

6ea843 ("My first commit.")

56

git rebase main

3c7c08 ("Another commit.") ᐸ-- HEAD, my_branch
ᐱ

|
main --> 31a051 ("My second commit.")

ᐱ

|
6ea843 ("My first commit.")

57

git checkout main

3c7c08 ("Another commit.") ᐸ-- my_branch
ᐱ

|
HEAD, main --> 31a051 ("My second commit.")

ᐱ

|
6ea843 ("My first commit.")

58

git merge my_branch

HEAD, main --> 3c7c08 ("Another commit.") ᐸ-- my_branch
ᐱ

|
31a051 ("My second commit.")

ᐱ

|
6ea843 ("My first commit.")

59

Remotes

60

Sharing repositories

Git is distributed: there is no notion of a central server.

If the repository was created using

then

checks for new commits from the same <URL> origin

git clone <URL>

git fetch

61

To download commits from a remote repository:

Note: <URL> must be public, or we must have appropriate credentials

git fetch <URL>

62

as an alternative,

saves commits in files that can be sent by email.

git format-patch

63

Fetch and pull, remotes

Just fetch repository data, do not affect working tree:

Fetch data and attempt merge (or rebase):

Setup a remote:

git fetch [<repository>] [remote_branch:local_branch]

git pull [<repository>]

git remote add [options] <name> <URL>

64

Configuration and more

65

Configuration

For anything too long for the CLI, git will make you edit a temporary file:

Commits capture the author’s name and email address:

git config --global core.editor "code --wait"

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

66

Q: How many git subcommands are there?

man git | grep -E '^ *git-.*\(1\)$'

A: 147

 Use git help / man git ⇒

67

68

