Version control systems

Version control systems

Assume you have a project:

myproject.py

You would like to try a modification, but do not know if it will work.

mkdir versions/
mkdir versions/v1l/
Cp myproject.py versions/vl1/

Result:

myproject.py
versions/

v1/
myproject.py

You proceed to modify myproject.py:

myproject.py <-- modified
versions/
v1/

myproject.py

If you like the modification and want to commit to it:

mkdir versions/v2/
Cp myproject.py versions/v2/

Otherwise, you revert to the old version:

Cp versions/vl/myproject.py myproject.py

If we committed to the modification:

myproject.py <-- same as "versions/v2/myproject.py"”
versions/
v1/

myproject.py
v2/

myproject.py

e try things

e determine when a bug was introduced

e multiple people working on a project

Revision control system (RCS), 1982
Concurrent versions system (CVS), 1986
Apache Subversion (“SVN”), 2000
Mercurial (“Hg”), 2005

» Used internally at Facebook/Meta
Piper (not public)

» Used for internal monorepo at Google
Git, 2005

= Spawned large hosting industry

(GitHub USD 7.5bn 2018, GitLab market cap USD 8.29bn)

s Used internally at Microsoft, Amazon

Git

e arepository stores the complete history of a project
n ye¥rsTonst — .git/
e acommitisaunitof change; it captures:
= asnapshot of all the project files
= an author, a date, ...
» an indication of the “parent commit” (the one it is based on)

e commits are designated by w1+ a hash

A hash maps any sequence of bits to a fixed-length bit string

The map is not injective

“SHA-17:160 bits / 20 bytes / 40 hex digits
Example: 1e6cac37c5c8c5ee99ec104954d09b07e96116ba

Git assumes SHA-1 is injective

... and is currently migrating to SHA-256 (256 bits / 32 bytes / 64 hex digits)

e Git commits are designated by SHA-1 hashes
Example: 1e6cac37c5c8c5ee99ec104954d09b07e96116ba

e When referring to a commit, a hash prefix can be used if unambiguous

Example: 1e6cac

e General usage:

m git <command> [<arguments. ..

o Example: git status
e Getting help:
= git help <command>
o Example: git help status
= man git-<command>

o Example:mangit-status

e For anything too long for the CLI, git will make you edit a temporary file:

git config --global core.editor "code --wait"

e Commits capture the author’s name and email address:

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

Creating a repository

e Creating a new project:

mkdir my_new_project/ my_new_project/
cd my_new_project/ .git/
git init

e “Cloning” an existing project:

git clone 11lama.cpp/

https://github.com/ggerganov/1llama.cpp.git .git/
cd 1llama.cpp/ .
ggml-alloc.c
ggml-alloc.h

Building a commit

e We never access the content of . git/ directly

e Instead, we modify files in the working tree (everything notin .git/)

= We can ask git to “check out” any past commit into the working tree

(i.e., make the working tree reflect that commit)

e In order to prepare a new commit, we “stage” the relevant modifications
(i.e., we tell git which files we want part of the new commit)

e Once ready, we create the new commit, along with a commit message

e \We create

= new_Tile_A.py
= new_file_B.py
= new_file_C.py

e Westagenew_file_A.pyandnew_file_B.py:

git add new_file_A.py new_file_B.py

e We commit them to the repository

git commit -m "My first commit."

git log

commit 6ea8433cf989c7c8580194035c7871b7de3c7c@8 (HEAD -> main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

(all other directories)

.

-~

working tree

(stored inside .git/ directory)

N

staging area

commits

(creating new_file A, new_file B, new_file ()

(all other directories)

.

-~

working tree

(stored inside .git/ directory)

N

new file A.
new file B.
new file C.

QY
Y

DY

staging area

commits

git add new_file_A.py new_file_B.py

(all other directories)

.

-~

working tree

(stored inside .git/ directory)

N

new file A.
new file B.
new file C.

oY
o

DY

staging area

new file A.py
new file B.py

commits

git commit -m "My first commit."

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A Oy 6ea843 My first commit
new:file:B. DYy new file A.py
new file C.py 1 new file B.py

(all other directories) (stored inside .git/ directory)

working tree staging area commits
new file A o 6ea843 My first commit
new:file:B. o} new file A.py
new file C.py new_file B.py

e Add multiple files at once using a pattern (including in subdirectories):

git add '*.py'

e Add all the files in the working tree:

git add -A

e Exclude somefiles from “git add -A”:
Put corresponding patternsin “.gitignore”:

*.0
/build/
/my_executable

git status

On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)
new_file_C.py

nothing added to commit but untracked files present (use "git add" to track)

Let us modify new_file_A.py:

git status

On branch main
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: new_file_A.py

Untracked files:

(use "git add <file>..." to include in what will be committed)
new_file_C.py

no changes added to commit (use "git add" and/or "git commit -a")

git diff

diff --git a/new_file_A.py b/new_file_A.py
index e69de29..ec7780c 100644

--- a/new_file_A.py

+++ b/new_file_A.py

@@ -0,0 +1 @@

+print('Hello, world!")

git add -A

git status

On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: new_file_A.py
new file: new_file_C.py

(previous state after first commit)

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A Oy 6ea843 My first commit
new:file:B. DYy new file A.py
new file C.py new_file B.py

(modifying new_file_A)

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A Oy 6ea843 My first commit
new:file:B. DYy new file A.py
new file C.py new_file B.py

git add -A

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A.py new file A.py bea843 My first commit
new file B.py new file A.py
new file C.py new file C.py new_tile_ B.py

git diff

git diff --staged

diff --git a/new_file_A.py b/new_file_A.py
index e69de29..ec7780c 100644

--- a/new_file_A.py

+++ b/new_file_A.py

@@ -0,0 +1 Q@

+print('Hello, world!")

diff --git a/new_file_C.py b/new_file_C.py
new file mode 100644

index 0000000..e69de29

git commit -m "My second commit."

git log

commit 31a05126a56b8156de47ee53092b6996d75a@c8c (HEAD -> main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:15:19 2023 +0200

My second commit.

commit 6ea8433cf989c7c8580194035c7871b7de3c7c08
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

(previous state after "git add -A")

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A.py new file A.py bea843 My first commit
new file B.py new_file A.py
new file C.py new file C.py new_tile_ B.py

git commit -m "My second commit."

(all other directories) (stored inside .git/ directory)
working tree staging area commits
new file A Oy 6ea843 My first commit
new:file:B. DYy new file A.py
new file C.py new_file B.py

31a051 My second commit

new file A.py
new file B.py
new file C.py

(all other directories) (stored inside .git/ directory)

working tree staging area commits
new file A o 6ea843 My first commit
new:file:B. o} new file A.py
new file C.py new_file B.py

31a051 My second commit

new file A.py
new file B.py
new file C.py

git checkout 6ea843

git log

commit 6ea8433cf989c7c8580194035c7871b7de3c7c@8 (HEAD)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

git log --all

commit 31a05126a56b8156de47ee53092b6996d75a@c8c (main)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:15:19 2023 +0200

My second commit.

commit 6ea8433cf989c7c8580194035c7871b7de3c7c®@8 (HEAD)
Author: Laurent Poirrier <poirrier@dev>
Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

(all other directories) (stored inside .git/ directory)

working tree staging area commits
new file A o 6ea843 My first commit
new:file:B. o} new file A.py
new file C.py new_file B.py

31a051 My second commit

new file A.py
new file B.py
new file C.py

git checkout 6ea843

(all other directories)
NN

-~

working tree

(stored inside .git/ directory)

N

new file A.py
new file B.py

staging area

commits

6ea843 My first commit

new file A.py

new file B.py

31a051 My second commit

new file A.py
new file B.py
new file C.py

(all other directories)
NN

-~

working tree

(stored inside .git/ directory)

N

new file A.py
new file B.py

staging area

commits

6ea843 My first commit

new file A.py
new file B.py

31a051 My second commit

new file A.py
new file B.py
new file C.py

Branches

31a051 ("My second commit.")
A

|
6ea843 ("My first commit.")

git checkout 31a@051 # "My second commit”

31a@051 ("My second commit.") <-- HEAD
A

|
6ea843 ("My first commit.")

git checkout 6ea843 # "My first commit”

31a051 ("My second commit.")
A

|
6ea843 ("My first commit.") <-- HEAD

modify some files
git add -A
git commit -m "Another commit."

31a@051 ("My second commit.") ©@7714c ("Another commit.")
N N

| |
6ea843 ("My first commit.")

<-- HEAD

git log --all --graph

* commit 07714cbadc8f13939039c0@7ac4b063d8b9b92506 (HEAD)
| Author: Laurent Poirrier <poirrier@dev>
| Date: Fri Sep 29 03:06:02 2023 +0200

Another commit.

|

|

|

| * commit 31a05126a56b8156de47ee53092b6996d75a0c8c (main)
|/ Author: Laurent Poirrier <poirrier@dev>

| Date: Fri Sep 29 02:15:19 2023 +0200

|
|
|

My second commit.
* commit 6ea8433cft989c7c8580194035¢c7871b7de3c7c@8
Author: Laurent Poirrier <poirrier@dev>

Date: Fri Sep 29 02:04:18 2023 +0200

My first commit.

Problem: if we “git checkout” back to the first or second commit, we lose “Another commit.”

Solution: named branches

Creating branches

git branch <branch-name>

(initial state after two commits)

HEAD, main --> 31a051 ("My second commit.")
A\

|
6ea843 ("My first commit.")

git checkout 6ea843

main --> 31a051 ("My second commit.")
A

|
HEAD --> 6ea843 ("My first commit.")

git branch my_branch

main --> 31a051 ("My second commit.")
A

|
HEAD --> 6ea843 ("My first commit.") <-- my_branch

git checkout my_branch

main --> 31a051 ("My second commit.")
A

|
6ea843 ("My first commit.") <-- HEAD, my_branch

git add ...; git commit

main --> 31a051 ("My second commit.") ©7714c ("Another commit.") <-- HEAD, my_branch
N N

| |
6ea843 ("My first commit.")

git checkout main

HEAD, main --> 31a@51 ("My second commit.") ©@7714c ("Another commit.") <-- my_branch
N N

| |
6ea843 ("My first commit.")

git merge my_branch

HEAD, main --> 81db75de ("Merge remote-tracking branch")
N N
| |
31a051 ("My second commit.") ©7714c ("Another commit.") <-- my_branch
N N

| |
6ea843 ("My first commit.")

<<<<<<< HEAD:new_file_A.py
print('Hello, world!")

print('Bye, world')
>>>>>>> my_branch:new_file_A.py

e resolve merge conflicts by editing files

e git add ... ; git commit

(just committed to branch my_branch)

main --> 31a@51 ("My second commit.") ©@7714c ("Another commit.") <-- HEAD, my_branch
N N

| |
6ea843 ("My first commit.")

git rebase main

3c7c@8 ("Another commit.") <-- HEAD, my_branch
N\
|
main --> 31a051 ("My second commit.")
N\

|
6ea843 ("My first commit.")

git checkout main

3c7c@8 ("Another commit.") <-- my_branch
N\
|
HEAD, main --> 31a051 ("My second commit.")
N\

|
6ea843 ("My first commit.")

git merge my_branch

HEAD, main --> 3c7c@8 ("Another commit.") <-- my_branch
N\
|
31a051 ("My second commit.")
N\

|
6ea843 ("My first commit.")

Remotes

Git is distributed: there is no notion of a central server.

If the repository was created using

git clone <URL>

then

git fetch

checks for new commits from the same <URL>

To download commits from a remote repository:

git fetch <URL>

Note: <URL> must be public, or we must have appropriate credentials

e as an alternative,

git format-patch

saves commits in files that can be sent by email.

e Just fetch repository data, do not affect working tree:

git fetch [<repository>] [remote_branch:local_branch]

e Fetch data and attempt merge (or rebase):

git pull [<repository>]

e Setup aremote:

git remote add [options] <name> <URL>

Configuration and more

e For anything too long for the CLI, git will make you edit a temporary file:

git config --global core.editor "code --wait"

e Commits capture the author’s name and email address:

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

Q: How many git subcommands are there?

man git | grep -E 'A *Fgit-.*\(1\)$'

A: 147

— Use git help / man git

