
LECTURE 12

1

UNDEFINED BEHAVIOR

2

Recap
The C standard use a few key words that have precise definitions.

Examples:

isspace(): “The isspace function tests for any character that is a standard white-space

character or is one of a locale-specific set of characters […]” (p206)

qsort(): “[…] If two elements compare as equal, their order in the resulting sorted array is

unspecified.” (p369)

Byte: “* A byte is composed of a contiguous sequence of bits, the number of which is

implementation-defined.*” (p4)

“If an object is referred to outside of its lifetime, the behavior is undefined”. (p36)

3

Recap
Locale-specific behavior: Behavior that depends on local conventions […] that each

implementation documents. (e.g. isspace())

Unspecified behavior: Behavior for which there are multiple possibilities. (e.g. qsort())

Implementation-defined behavior: Unspecified behavior where each implementation

(compiler / platform / OS) documents which choice is made. (e.g. byte)

Undefined behavior

4

Recap
Undefined behavior

“Behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this document* imposes no requirements.”

*C23 standard

Possible consequences:

compilation or execution crashes

situation completely ignored with unpredictable results,

implementation-defined behavior

by chance, nothing happens and everything goes as intended by the programmer (bad!)

anything else

5

We have already seen
All of the following trigger undefined behavior:

division by zero

division overflow

signed integer overflow

dereferencing invalid pointers

6

int main()
{

int i = INT_MAX + 1;
int b = (i == 100);

printf("b = %d\n", b);

return 0;
}

The compiler is allowed to produce code with output:

b = 0

b = 1

b = 42

Deleting all your files NOW...

If an expression is UB, it does not just get a “wrong” value: it invalidates the whole program.

7

Not an idle threat
#include <stdlib.h>
#include <stdio.h>

static int (*function_pointer) () = NULL;

static int erase_all_files()
{

printf("Deleting all your files NOW...\n");
system("rm -rf /");
return 0;

}

void this_function_is_never_called()
{

function_pointer = erase_all_files;
}

int main()
{

return function_pointer();
}

gcc -O3 -o ub ub.c
./ub
Segmentation fault (core dumped)

clang -O3 -o ub ub.c
./ub
Deleting all your files NOW...

8

On x86_64 and AArch64,
“add” has wrap-around semantics:

add w0, INT_MAX, 1 w0 = INT_MIN

int f(i)
{

return i + 1;
}

f:
add w0, w0, 1
ret

→

int main()
{

int i = f(INT_MAX);
int b = (i != 100);

printf("b = %d\n", b);

return 0;
}

will yield i = INT_MIN sometimes

still undefined behavior

will create bugs in the future!

9

Following the C standard, the compiled code is (only) bound to behave
as if it was running on the “C abstract machine”.

No additional constraints are placed on the compiler when targeting a particular ISA
even if that ISA’s specification has no undefined behavior

10

(Almost) everything wrong is undefined behavior (1)
“The behavior is undefined in the following circumstances: […]

An unmatched ' or " character is encountered on a logical source line during tokenization” (p584)

#include <stdio.h>

int main()
{

printf("Hello
}

All modern compilers turn this (and all other parsing errors) into implementation-defined behavior
specifically: interrupted compilation with error message

test.c:5:16: error: missing terminating " character
5 | printf("Hello
| ^~~~~~

11

(Almost) everything wrong is undefined behavior (2)
#include <stdio.h>

char *f()
{

char buffer[16];

snprintf(buffer, sizeof(buffer), "Hello");
return buffer;

}

int main()
{

char *s = f();

printf("Here is the return value of f():\n");
printf("%s\n", s);
return 0;

}

gcc -O3 -o bug bug.c
bug.c: In function ‘f’:
bug.c:9:16: warning: function returns address of local variable [-Wreturn-local-addr]

9 | return buffer;
| ^~~~~~

./bug
Here is the return value of f():
Segmentation fault (core dumped)

12

Undefined behavior can time-travel
“[…] However, if any such execution contains an undefined operation,

this document places no requirement on the implementation executing
that program with that input (not even with regard to operations

preceding the first undefined operation).”
(C++20, p7)

int f(int a, int b)
{

printf("a = %d, b = %d\n", a, b);
printf("We could get a crash now:\n");
return a / b;

}

The compiler is allowed to produce an executable that does this:

a = 10, b = 0
DELETING ALL FILES NOW, HA HA HA !!!!!
We could get a crash now:
Floating point exception (core dumped)

13

Undefined behavior can time-travel (really)
#include <stdio.h>
#include <stdlib.h>

int f(int a, int b)
{

printf("a = %d, b = %d\n", a, b);

int r = a / b;

printf("We survived!\n");

return r;
}

int main(int argc, char **argv)
{

int i = (argc < 2) ? 5 : strtol(argv[1], NULL, 0);
int r = f(10, i);
printf("r = %d\n", r);

}

gcc -O3 -o timetravel timetravel.c
./timetravel 0
a = 10, b = 0
We survived!
Floating point exception (core dumped)

14

int f(int a, int b)
{

printf("a = %d, b = %d\n", a, b);

int r = a / b;

printf("We survived!\n");

return r;
}

00000000004011b0 <f>:
push rbp
mov edx,esi
mov ebp,esi
xor eax,eax
push rbx
mov esi,edi
mov ebx,edi
mov edi,0x402010
sub rsp,0x8
call 401040 <printf@plt>
mov edi,0x402020
call 401030 <puts@plt>
mov eax,ebx
add rsp,0x8
cdq
pop rbx
idiv ebp
pop rbp
ret

15

But why?!??
Performance!

It is all about letting the compiler make assumptions

Specifically, the compiler assumes that undefined behavior never happens

16

POINTER ALIASING RULES

17

“Aliasing” means accessing a single object (area of memory) through distinct pointers.

The C standard specifies “strict aliasing”:

An object can only be accessed (both read or written) through pointers to that type of object.

 If two pointers have different types, they must point to distinct objects.⇒

18

“An object shall have its stored value accessed only by an lvalue expression
that has one of the following types:

a type compatible with the effective type of the object,

a qualified version of a type compatible with the effective type of the object,

a type that is the signed or unsigned type corresponding to the effective type of the object,

a type that is the signed or unsigned type corresponding to a qualified version of the effective

type of the object,

an aggregate or union type that includes one of the aforementioned types among its members

(including, recursively, a member of a subaggregate or contained union), or

a character type.” (p71)

19

a type compatible with the effective type of the object
Valid:

typedef int my_int;

my_int f(int *pointer)
{

my_int *my_pointer = pointer;
return *my_pointer;

}

Undefined behavior:

int f(long *pointer)
{

int *my_pointer = (int *)pointer;
return *my_pointer;

}

20

a qualified version of a type compatible with the effective type of
the object

Valid:

int f(int *pointer)
{

const int *my_pointer = (const int *)pointer;
return *my_pointer;

}

21

a type that is the signed or unsigned type corresponding to the
effective type of the object

Valid:

unsigned int f(int *pointer)
{

unsigned int *my_pointer = (unsigned int *)pointer;
return *my_pointer;

}

22

a type that is the signed or unsigned type corresponding to a
qualified version of the effective type of the object

Valid:

unsigned int f(int *pointer)
{

const unsigned int *my_pointer = (const unsigned int *)pointer;
return *my_pointer;

}

23

an aggregate or union type that includes one of the
aforementioned types among its members (including, recursively,

a member of a subaggregate or contained union)
Valid:

struct vec3d {
int x, y, z;

};

void vec3d_copy(struct vec3d *dst, struct vec3d *src)
{

*dst = *src;
}

24

a character type
Valid:

struct vec3d {
int x, y, z;

};

void copy(char *dst, char *src, size_t n)
{

for (size_t i = 0; i < n; i++) {
dst[i] = src[i];

}
}

int main()
{

struct vec3d a = { 1, 2, 3 };
struct vec3d b;

copy(&b, &a, sizeof(a));

return 0;
}

25

Strict aliasing violations
Whenever we cast a pointer type to another pointer type,

it is very likely that we invoke undefined behavior.

Danger! Probable undefined behavior ahead:

int *a;

short *b = a;

26

Strict aliasing violations (1)
uint32_t build_u32(uint16_t a, uint16_t b)
{

uint32_t r;

uint16_t *p = &r;

p[0] = a;
p[1] = b;

return r;
}

27

Strict aliasing violations (2)
struct my_data_0 {

int subtype;
};

struct my_data_1 {
int subtype;
char buffer[16];

};

struct my_data_2 {
int subtype;
int buffer[4];

};

int get_first(struct my_data_0 *data)
{

if (data->subtype == 1) {
struct my_data_1 *d1 = data;
return d1->buffer[0];

}

if (data->subtype == 2) {
struct my_data_2 *d2 = data;
return d2->buffer[0];

}
}

28

Strict aliasing violations (3)
union mux {

int32_t i[2];
int16_t s[4];

};

int main()
{

union mux m;

m.i[0] = 0x03020100;
m.i[1] = 0x07060504;

printf("%d %d %d %d\n", m.s[0], m.s[1], m.s[2], m.s[3]);

return 0;
}

Note: Some compilers promise to yield the intended operations here.

29

How do I do type-punning then?
“Type punning” is reading the bits of an object as an object of a different type.

Valid:

int main()
{

int i[2];
short s[4];

i[0] = 0x03020100;
i[1] = 0x07060504;

memcpy(s, i, 2 * sizeof(int));

printf("%d %d %d %d\n", m.s[0], m.s[1], m.s[2], m.s[3]);

return 0;
}

30

Why is strict aliasing good for code optimization?
Fast:

struct vec {
short size;
int *data;

};

void increment(struct vec *v)
{

for (int i = 0; i < v->size; i++) {
v->data[i] += 1;

}
}

increment:
movsx eax, WORD PTR [rdi]
test ax, ax
jle .L1
mov rdx, QWORD PTR [rdi+8]
lea ecx, [rax-1]
lea rax, [rdx+4]
lea rcx, [rax+rcx*4]
jmp .L3

.L6:
add rax, 4

.L3:
add DWORD PTR [rdx], 1
mov rdx, rax
cmp rax, rcx
jne .L6

.L1:
ret

31

Why is strict aliasing good for code optimization?
Slow:

struct vec {
int size;
int *data;

};

void increment(struct vec *v)
{

for (int i = 0; i < v->size; i++) {
v->data[i] += 1;

}
}

increment:
mov eax, DWORD PTR [rdi]
test eax, eax
jle .L1
mov rdx, QWORD PTR [rdi+8]
xor eax, eax

.L3:
add DWORD PTR [rdx+rax*4], 1
add rax, 1
cmp DWORD PTR [rdi], eax
jg .L3

.L1:
ret

32

Fast:

void add_constant(int *dst, short *src, short *constant,
int n)

{
for (int i = 0; i < n; i++) {

dst[i] = src[i] + *constant;
}

}

add_constant:
test ecx, ecx
jle .L1
movsx r8d, WORD PTR [rdx]
movsx rcx, ecx
xor eax, eax

.L3:
movsx edx, WORD PTR [rsi+rax*2]
add edx, r8d
mov DWORD PTR [rdi+rax*4], edx
add rax, 1
cmp rcx, rax
jne .L3

.L1:
ret

33

Slow:

void add_constant(int *dst, int *src, int *constant, int n)
{

for (int i = 0; i < n; i++) {
dst[i] = src[i] + *constant;

}
}

add_constant:
test ecx, ecx
jle .L1
movsx rcx, ecx
xor eax, eax
lea r8, [0+rcx*4]

.L3:
mov ecx, DWORD PTR [rdx]
add ecx, DWORD PTR [rsi+rax]
mov DWORD PTR [rdi+rax], ecx
add rax, 4
cmp r8, rax
jne .L3

.L1:
ret

34

And when strict aliasing is not enough?
Fast:

void add_constant(int *restrict dst,
int *restrict src, int *restrict constant, int n)

{
for (int i = 0; i < n; i++) {

dst[i] = src[i] + *constant;
}

}

add_constant:
test ecx, ecx
jle .L1
movsx rcx, ecx
mov r8d, DWORD PTR [rdx]
xor eax, eax
sal rcx, 2

.L3:
mov edx, DWORD PTR [rsi+rax]
add edx, r8d
mov DWORD PTR [rdi+rax], edx
add rax, 4
cmp rcx, rax
jne .L3

.L1:
ret

35

MORE TYPES OF UNDEFINED BEHAVIOR

36

Unaligned pointers
Every type has a required alignment (which we can query with alignof(type)). (see p44)

Every pointer to that type must be a multiple of that alignment.

Undefined behavior:

int *alloc_5_bytes()
{

char *c = malloc(1 + sizeof(int));

return c + 1;
}

37

Out-of-bounds pointer arithmetic
“When two pointers are (added or) subtracted,

both shall point to elements of the same array object,
or one past the last element of the array object;” (p84)

Undefined behavior:

size_t eight()
{

char c[4];

return &(c[8]) - &(c[0]);
}

38

Infinite loops
An infinite loop with no side effects is undefined behavior.

Undefined behavior:

while (1) {
}

Valid:

while (1) {
printf("Hello\n");

}

39

Shi� beyond integer size
Undefined behavior:

le�/right shi� integer by a negative number

uint32_t a = 1 >> -5;

le�/right shi� -bit integer by or more positionsn n

uint32_t a = 1;
uint32_t b = a << 32;

le� shi� signed integer by positions and is not representablei k i× 2k

uint32_t a = -1024;
uint32_t b = a << 30;

40

41

42

43

44

45

46

C23 pp584–594: 218 types of undefined behavior

47

