LECTURE 13

REAL NUMBERS

How do we represent non-integers?

now we represent non megers.

Keeping in mind:

- If we consider *n* bits of memory,
 - their values can take 2^n combinations
 - so we can represent 2^n numbers at best with those n bits
- We have a finite amount of memory,
 - so we cannot represent all real numbers
- We (typically) want fast operations,
 - so (ideally) we need hardware to perform them. • Hardware has tight limits on the number of logic gates available

Practical limitations

- Integer are restricted in one way:
 - their range (e.g. [INT_MIN, INT_MAX])
- Reals are restricted in two ways:
 - their range (e.g. $[-10^{308}, 10^{308}])$
 - the number of reals we can represent in that range (e.g. {..., 0, 10^{-200} , 2×10^{-200} , ...}) i.e. their precision

FIXED-POINT ARITHMETIC

Decimal example

- Instead of computing money values in €, we could use ¢:
 - e.g. 29.99 € = 2999 ¢
 - then use integer operations.
- This is fixed-point arithmetic
- specifically, with 2 decimal places reserved for the fractional part.

If $+, -, \times, /$ are the elementary integer operations:

• $euro_to_cent(e) := e \times 100$ euro_to_cent(5 €) = 500 ¢ • cent_to_euro(a) := a/100cent_to_euro(700 ¢) = 7 € • cent_add(a, b) := a + bcent_add(700 ¢, 500 ¢) = 1200 ¢ • cent_sub(a, b) := a - bcent_sub(700 ¢, 500 ¢) = 200 ¢ • cent_mul $(a,b) := (a \times b)/100$

Binary fixed-point arithmetic

- There is no universally accepted standard for fixed-point arithmetic
- But there is no real need for one:

Only two parameters:

 \circ *n*: total number of bits

 $\circ p$: number of bits after the decimal point

All the operations are just integer operations

• For mul and div, two integer operations each

Binary example

64-bit integer

32-bit integer part 32-bit fractional part

- i64_to_fix(e) := $e \times 2^{32}$
- fix_to_i64(a) := $a/2^{32}$
- $fix_add(a, b) := a + b$
- $fix_sub(a,b) := a b$
- fix mul(a b) ·- ($a \times b$) /2³²

typedef int64_t fix;

```
static inline fix to_fix(int64_t e)
{
    return e << 32;
}
static inline int64_t from_fix(fix a)
{
    return a >> 32;
}
static inline fix fix_add(fix a, fix b)
{
    return a + b;
}
static inline fix fix_sub(fix a, fix b)
{
    return a - b;
}
static inline fix fix_mul(fix a, fix b)
{
    return ((__int128)a * b) >> 32;
```

Fixed-point arithmetic

- fast, no need for extra hardware
- easy to understand and study (predictible): • uniform absolute precision (e.g. 2^{-32} over whole range)

Cons:

- limited range (e.g. [-2147483648.999, 2147483647.999])
- limited precision (e.g. $2^{-32} \simeq 0.000000002328$)

Possible improvements:

FLOATING-POINT ARITHMETIC

- Take the number -2147483648.999:
 - 2147483648.999
- - = -2.147483648999e+9

Similarly, take the number 0.000000002328:

0.000000002328

= - 2.147483648999 \times 10⁹

10

Scientific notation (definition)

- -2.147483648999 × 10⁺⁹
- $\pm d$.mmmmm...×10^{±×××}··

- ± + or -
- d single digit between 1 and 9
- mmmmm... predeterminated number of digits between Ø and 9
- ±xxx.. + or -. predeterminated number of digits between 0 and 9

 $\frac{\text{blue}(\text{definition})}{8999 \times 10^{+9}} \times 10^{\pm \times \times \times \cdot \cdot}$

f digits between 0 and 9 er of digits between 0 and 9

Binary floating-point numbers

 \pm d.mmmmm...×2^{±×××··}

- \pm sign bit + or -
- d single bit 1 and 1

Binary floating-point numbers

 $\pm 1.$ mmmmm... $\times 2^{\pm \times \times \times}$.

- ± sign bit + or -
- mmmmm... "mantissa" bits
- ±xxx.. "exponent" bits

Floating-point standard

- In 1985, the Institute of Electrical and Electronics Engineers publishes stand about floating-point arithmetic (IEEE-754)
- Most hardware makers adopt the standard very quickly thereafter (Intel 30387, launched in 1987, is fully compliant)
- x86_64 natively supports binary32 and binary64 formats
- AArch64 natively supports binary16, binary32 and binary64 formats

component	binary16	binary32	binary64
± sign bit	1	1	1
mmmm mantissa bits	10	23	52
±xxx. exponent bits	5	8	11
exponent range	-1415	-126127	-10221023

Precision

Let $\mathrm{fl}(x)$ be the floating-point representation of the real number $x \in \mathbb{R}$.

• Absolute precision: For a given x, the smallest e such that

• **Relative precision:** For a given *x*,

binary64 vs. fixed-point 32+32

 $fl(x + e) \neq fl(e)$

$$\varepsilon := -$$

fixed-point 32+32

-

	absolute	relative	absolute	rel
precision at 10^{-9}	$2.33 imes10^{-10}$	0.0233	$2.07 imes10^{-25}$	2.22 >
precision at 10^{-6}	$2.33 imes10^{-10}$	$2.33 imes10^{-5}$	$2.12 imes10^{-22}$	2.22 >
precision at 10^{-3}	$2.33 imes10^{-10}$	$2.33 imes10^{-8}$	$2.17 imes10^{-19}$	2.22 >
precision at 1	$2.33 imes10^{-10}$	$2.33 imes10^{-11}$	$2.22 imes10^{-16}$	2.22 >
precision at 10^{+3}	$2.33 imes10^{-10}$	$2.33 imes10^{-14}$	$1.14 imes10^{-13}$	2.22 >
precision at 10^{+6}	$2.33 imes10^{-10}$	$2.33 imes10^{-17}$	$1.16 imes 10^{-10}$	2.22 >
precision at 10^{+9}	$2.33 imes 10^{-10}$	$2.33 imes 10^{-20}$	1.19×10^{-7}	2.22

floating-point bina

The floating-point number line

Languages that mandate IEEE-754 for floating-p

language	since
С	C99
C++	C++03
Fortran	Fortran 2003
Rust	
Python	
JavaScript	

le

f32	f64
IJZ	104

Inaccuracy

In base 10,

- $1/3 \simeq 0.3333$
- $2/3 \simeq 0.6666$
- $1/3 + 2/3 \simeq 0.9999$

In base 2,

>>> a = 0.1
>>> f'{a:.50f}'
'0.10000000000000000555111512312578270211815834045410'

racy 10,

Numerical instability

Consider the following approximation of the derivative of f:

 $rac{d}{dx}f(x)\simeq rac{f(x+\delta)-f(x)}{\delta}$

Let us consider the function f:

$$f(x) = x$$
 so

 $\frac{d}{dx}f(x) = 1$

$$ullet$$
 at $x=10^{+5}$,

>>> ((1e+5 + 1e-6) - 1e+5) / 1e-6
0.9999930625781417

• at
$$x=10^{+8}$$
,

>>> ((1e+8 + 1e-6) - 1e+8) / 1e-6
0.998377799987793

$$ullet$$
 at $x=10^{+10}$,

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6 1 9073486328125

What is happening?

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6

- At $x = 10^{+10}$, we first compute (1e+10 + 1e-6)
 - which is a big number, close to 1e+10

 - floating-point numbers have a good *relative* accuracy everywhere, \simeq - but at 10^{+10} , the *absolute* accuracy is not great, $\simeq 1.91 imes 10^{-6}$ • so the result of (1e+10 + 1e-6) may be off by roughly $1.91 imes10^{-6}$
- We then subtract 1e+10.

 - If we were using exact arithmetic, we would get 1e-6 exactly, • but we are using floating-point arithmetic,

Therefore,

• floating-point accuracy is often great

• but some algorithms are unstable

• we need to be extremely careful before trusting floating-point results

Never do exact comparisons

>>> 0.1 + 0.2 == 0.3 False

>>> 1.0 + 1e-16 <= 1.0 True

So how do we do comparisons?

• If exact comparisons are important, do not use floating-point arithmetic.

• If we care about speed and can tolerate some errors...

>>> 0.1 + 0.2 == 0.3 False

becomes

>>> tolerance = 1e-10
>>> abs((0.1 + 0.2) - 0.3) <= tolerance
True</pre>

 $>>> \chi >= 0.0$

becomes

FLOATING-POINT ROUNDING

Given a floating point number a, we want to compute x = a/3.

Q: If a/3 cannot be represented exactly by a floating-point number, what value do we give x?

A: We "round" x to the floating-point number "closest" to the real value a/

- Round to nearest, ties to even (default)
 - nearest value
 - in case of ties, set last mantissa bit to zero
- Round to nearest, ties away from zero
 - nearest value
 - in case of ties, set last mantissa bit to one
- Round toward zero
 - if between two numbers, choose the one nearest to zero
 - even if it is not the nearest to the real value

Determinism

- Floating-point arithmetic is sometimes inaccurate
- but it is deterministic:
 - the result of most operations is precisely defined
 - we can predict the result of such operations bit-for-bit

Let us denote by $\mathrm{fl}(x)$ the floating-point representation of the real number x

The IEEE-754 standard mandates correct rounding as specified by the currently-selected rounding mode for:

- addition, negation, subtraction: x +
- multiplication, division: x /
- square root: square squ
- fucad multinly_add. fmal

x + y gives fl(x + y)x / y gives fl(x/y) $sqrt(x) = fl(\sqrt{x})$ $fm_2(x,y,z) - fl(x \times y + z)$

Division example

When executing

z = x / y

- we first take the floating-point numbers x and y, and consider them as if th (exact, infinite-precision) real numbers
- we compute the (exact, infinite-precision) real quotient x/y.
- we round the result according to the current rounding mode: fl(x / y)

(y * (x + 4.0)) / (z - 3.0)

gives:

 $\operatorname{fl}(\operatorname{fl}(y \times \operatorname{fl}(x+4)) / \operatorname{fl}(z-3)))$

About fused multiply-add

Beware:

fma(x, y, z) \neq x * y + z

Indeed:

- $fma(x, y, z) = fl(x \times y + z)$
- but x * y + z gives $fl(fl(x \times y) + z)$

More floating-point non-identities

- associativity does not hold: $x + (y + z) \neq (x + y) + z$
- distributivity does not hold: $x * (y + z) \neq x * y + x * z$
- $z) \neq (x + y) + z$ $z) \neq x * y + x * z$

The IEEE-754 standard mandates correct rounding for: +, -, ×, /, sqrt(), fma()

The IEEE-754 standard does not mandate correct rounding for most other functions, in particular:

- sin, cos, tan
- asin, acos, atan
- sinh, cosh, tanh

Floating-point and compilers

- C99 and C++03 mandate IEEE-754
- which in turn mandates correct rounding for +, -, ×, /, sqrt(), fma However, if we do not specify a C or C++ standard (e.g. - std=c17 or - std=
- gcc and clang do not follow IEEE-754
 - they will happily exploit associativity and distributivity
 - they will replace x * y + z by fma(x, y, z)

Why does correct rounding matter?

- (generally) not because of accuracy
- but because for any real number x, there is exactly one correct rounding
- as a result, there is no ambiguity:
 - given a set of floating-point numbers
 - given any expression involving those numbers and +, -, ×, /, sq
 - there is exactly one correct answer
 - which is precisely specified by IEEE-754, down to its bit representation

What happens without correct rounding?

Results can change when:

- we change architecture
- we change compiler
- we change the standard C library
- we change the version of the compiler
- we change the version of the standard C library
- we change our code (even a completely unrelated part)

Note Ifweusesin cos loa exp

library unrelated part)

which are not correctly round

BEYOND FLOATING-POINT ARITHN

Interval arithmetic

- We represent every real number $x \in \mathbb{R}$
- by a pair of floating-point number $\left(l,u
 ight)$
 - with $x \in [l, u].$

We exploit the Round toward +∞ and Round toward -∞ modes to compute the appropriate interval for every operation.

al number $x \in \mathbb{R}$ oint number (l, u)[l, u].

Pros

- fast
- we always know how accurate a result is

Cons

• the interval [l, u] often becomes large very quickly (the bounds are usually too pessimistic)

Unum

- introduced in 2015, latest revision 2017
- For a given fixed bit width, claims better allocation of available precision
- optional interval arithmetic
- very limited adoption (no hardware support on any mainstream platforms)

The GNU multi-precision library

GMP is a C library that provides support for:

- variable-width (a.k.a. arbitrary-size) integers
- arbitrary-size rational numbers (i.e. fractions):

where gcd(numerator, denominator) = 1

$fraction = \frac{numerator}{denominator},$

The GNU MPFR library

MPFR builds on top of GMP to add arbitrary-size floating-point numbers

double x = 22.0 / 7.0;printf(".20f\n", x); mpfr_t x; // initialize x with 512-bit mantissa mpfr_init2(x, 512); // set x to value 22, round-to-nearest mpfr_set_ui(x, 22, MPFR_RNDN); mpfr_div_ui(x, 7, MPFR_RNDN); // divide x to 7, round-to-nearest mpfr_printf("%.200Rf\n", x); // print x mpfr_clear(x); // free memory

Python fractions

Python integers are already variable-width by default:

>>> -2 ** 65 -36893488147419103232 # <-- correct result, no over

Python fractions add support for (variable-width) rationals in top of ther

import fractions

Why don't we always use exact rational numbe

- convenience (unfortunately)
 - need to use GMP in C
 - need "import fractions" in Python
- memory
 - the size of the numerator and denominator can explode in iterative alg (despite gcd reductions)
- speed
 - since arbitrary-sized integers don't come with native hardware support

Should we use exact rational numbers more often

(in particular when exactness matters)

(or when and speed does not matter)

YES

Sympolic Computations

In a symbolic algebra system:

• $\sqrt{2}$ is never evaluated to $\simeq 1.4142$:

```
sage: sqrt(8)
2*sqrt(2)
```

• We can also carry variables that have no specific value:

```
sage: x, y, z = var('x y z')
sage: sqrt(8) * x
2*sqrt(2)*x
```

• This allows us to solve problems symbolically:

Symbolic algebra systems

- SageMath (free software, syntax similar to Python)
- Maple
- Wolfram Mathematica

derivative of log(x^3 + x^2)		
ST MATH INPUT	I EXTENDED KEYBOARD	 Е

Assuming "log" is the natural logarithm | Use the base 10 logarithm instead

Derivative

$$\frac{d}{d}(\log(x^3+x^2)) - \frac{3x+2}{d}$$

