
LECTURE 13



REAL NUMBERS

How do we represent non-integers?



How do we represent non integers?
Keeping in mind:

If we consider  bits of memory,n

their values can take  combinations2n

so we can represent  numbers at best with those  bits2n n

We have a finite amount of memory,

so we cannot represent all real numbers

We (typically) want fast operations,

so (ideally) we need hardware to perform them.

Hardware has tight limits on the number of logic gates available

meaning we use very few bits (say 16, 32 or 64, like for integers)

… further restricting how many real numbers we can represent



Practical limitations
Integer are restricted in one way:

their range (e.g.  )[INT_MIN, INT_MAX]
Reals are restricted in two ways:

their range (e.g.  )[−10 , 10 ]308 308

the number of reals we can represent in that range

(e.g.  )

i.e. their precision

{… , 0, 10 , 2 ×−200 10 , …}−200



FIXED-POINT ARITHMETIC



Decimal example
Instead of computing money values in €, we could use ¢:

e.g.      29.99 € = 2999 ¢

then use integer operations.

This is fixed-point arithmetic

specifically, with 2 decimal places reserved for the fractional part.

If  / are the elementary integer operations:+, −, ×,



euro_to_cent(e) := e × 100
euro_to_cent(5 €) = 500 ¢

cent_to_euro(a) := a/100
cent_to_euro(700 ¢) = 7 €

cent_add(a, b) := a + b

cent_add(700 ¢, 500 ¢) = 1200 ¢

cent_sub(a, b) := a − b

cent_sub(700 ¢, 500 ¢) = 200 ¢

cent_mul(a, b) := (a × b)/100
5 € × 7: cent_mul(500 ¢, 700) = 500 × 700 / 100 = 3500 

cent_div(a, b) := (a × 100)/b
8 € / 4: cent div(800 ¢ 400 ¢) = (800 × 100) / 400 = 2



8 € / 4: cent_div(800 ¢, 400 ¢)  (800 × 100) / 400  2

Binary fixed-point arithmetic
There is no universally accepted standard for fixed-point arithmetic

But there is no real need for one:

Only two parameters:

: total number of bitsn

: number of bits a�er the decimal pointp

All the operations are just integer operations

For mul and div, two integer operations each



Binary example
64-bit integer

32-bit integer part 32-bit fractional part

i64_to_fix(e) := e × 232

fix_to_i64(a) := a/232

fix_add(a, b) := a + b

fix_sub(a, b) := a − b

fix_mul(a, b) := (a × b)/232

fix_div(a, b) := (a × 2 )/b32

typedef int64_t fix;



static inline fix to_fix(int64_t e)
{

return e << 32;
}

static inline int64_t from_fix(fix a)
{

return a >> 32;
}

static inline fix fix_add(fix a, fix b)
{

return a + b;
}

static inline fix fix_sub(fix a, fix b)
{

return a - b;
}

static inline fix fix_mul(fix a, fix b)
{

return ((__int128)a * b) >> 32;
}

static inline fix fix_div(fix a, fix b)
{

return ((__int128)a << 32) / b;
}

Fixed-point arithmetic



Pros:

fast, no need for extra hardware

easy to understand and study (predictible):

uniform absolute precision (e.g.   over whole range)2−32

Cons:

limited range (e.g.  )[−2147483648.999, 2147483647.999]
limited precision (e.g.  )2 ≃−32 0.0000000002328

Possible improvements:

larger range

better absolute precision around zero

l b l t i i f bi b



lower absolute precision for big numbers

FLOATING-POINT ARITHMETIC

Scientific notation



Scientific notation
Take the number :−2147483648.999

= -2.147483648999e+9

     

=
−
−

2147483648.999
2.147483648999 × 109

Similarly, take the number :0.0000000002328

= 2.328e-10

    

=
0.0000000002328

2.328 × 10−10



Scientific notation (definition)
-2 . 147483648999 × 10+9

±d . mmmmm... × 10±xxx..

±     + or -

d     single digit between 1 and 9

mmmmm...     predeterminated number of digits between 0 and 9

±xxx..     + or -, predeterminated number of digits between 0 and 9



Binary floating-point numbers
± d . mmmmm... × 2±xxx..

±     sign bit + or -

d     single bit 1 and 1



Binary floating-point numbers
± 1 . mmmmm... × 2±xxx..

±     sign bit + or -

mmmmm...     “mantissa” bits

±xxx..     “exponent” bits

Now we just need to all agree on how many bits for each…



Floating-point standard
In 1985, the Institute of Electrical and Electronics Engineers publishes stand

about floating-point arithmetic (IEEE-754)

Most hardware makers adopt the standard very quickly therea�er

(Intel 30387, launched in 1987, is fully compliant)

x86_64 natively supports binary32 and binary64 formats

AArch64 natively supports binary16, binary32 and binary64 formats



component binary16 binary32 binary64

± sign bit 1 1 1

mmmmm... mantissa bits 10 23 52

±xxx.. exponent bits 5 8 11

exponent range -14..15 -126…127 -1022…1023



Precision
Let  be the floating-point representation of the real number .fl(x) x ∈ R

Absolute precision: For a given , the smallest  such thatx e

fl(x + e) = fl(e)

Relative precision: For a given ,x

ε :=  

x

e

binary64 vs. fixed-point 32+32



fixed-point 32+32 floating-point binar

absolute relative absolute rel

precision at 

precision at 

precision at 

precision at 

precision at 

precision at 

precision at 

precision at ❌

range

10−9 2.33 × 10−10 0.0233 2.07 × 10−25 2.22 ×

10−6 2.33 × 10−10 2.33 × 10−5 2.12 × 10−22 2.22 ×

10−3 2.33 × 10−10 2.33 × 10−8 2.17 × 10−19 2.22 ×

1 2.33 × 10−10 2.33 × 10−11 2.22 × 10−16 2.22 ×

10+3 2.33 × 10−10 2.33 × 10−14 1.14 × 10−13 2.22 ×

10+6 2.33 × 10−10 2.33 × 10−17 1.16 × 10−10 2.22 ×

10+9 2.33 × 10−10 2.33 × 10−20 1.19 × 10−7 2.22 ×

10+16 2.00 2.22 ×

∣x∣ ≤ 2 15 × 109 ∣x∣ ≤ 1 80 × 10



range ∣x∣ ≤ 2.15 × 10 ∣x∣ ≤ 1.80 × 10The floating-point number line



Languages that mandate IEEE-754 for floating-p
language since binary32 binary64

C C99 float double

C++ C++03 float double

Fortran Fortran 2003 real double

Rust f32 f64

Python ✔

JavaScript ✔



Inaccuracy
In base 10,

1/3 ≃ 0.3333
2/3 ≃ 0.6666
1/3 + 2/3 ≃ 0.9999

In base 2,

>>> a = 0.1
>>> f'{a:.50f}'
'0.10000000000000000555111512312578270211815834045410'



Numerical instability
Consider the following approximation of the derivative of :f

 f(x) ≃
dx

d
 

δ

f(x + δ) − f(x)

Let us consider the function :f

f(x) = x so  f(x) =
dx

d
1

and compute its derivative with .δ = 10−6



at ,x = 10+5

>>> ((1e+5 + 1e-6) - 1e+5) / 1e-6
0.9999930625781417

at ,x = 10+8

>>> ((1e+8 + 1e-6) - 1e+8) / 1e-6
0.998377799987793

at ,x = 10+10

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6
1.9073486328125

What is happening?
>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6



(( ) )
1.9073486328125

At , we first compute (1e+10 + 1e-6)x = 10+10

which is a big number, close to 1e+10

floating-point numbers have a good relative accuracy everywhere, ≃
but at , the absolute accuracy is not great, 10+10 ≃ 1.91 × 10−6

so the result of (1e+10 + 1e-6) may be off by roughly 1.91 × 10−6

We then subtract 1e+10.

If we were using exact arithmetic, we would get 1e-6 exactly,

but we are using floating-point arithmetic,

so we get something close to 1e-6…

… but potentially off by roughly 1.91 × 10−6

We divide by 1e-6,



We divide by 1e 6,

and get a number in [1 − 1.91, 1 + 1.91]

Therefore,

floating-point accuracy is o�en great

but some algorithms are unstable

we need to be extremely careful before trusting floating-point results



Never do exact comparisons
>>> 0.1 + 0.2 == 0.3
False

>>> 1.0 + 1e-16 <= 1.0
True



So how do we do comparisons?
If exact comparisons are important, do not use floating-point arithmetic.

If we care about speed and can tolerate some errors…



>>> 0.1 + 0.2 == 0.3
False

becomes

>>> tolerance = 1e-10
>>> abs(  (0.1 + 0.2) - 0.3   ) <= tolerance
True

>>> x >= 0.0

becomes

>>> x >= -tolerance



FLOATING-POINT ROUNDING



Given a floating point number , we want to compute .a x = a/3

Q: If  cannot be represented exactly by a floating-point number,
what value do we give ?

a/3
x

A: We “round”  to the floating-point number “closest” to the real value x a/

Rounding modes



Rounding modes
Round to nearest, ties to even (default)

nearest value

in case of ties, set last mantissa bit to zero

Round to nearest, ties away from zero

nearest value

in case of ties, set last mantissa bit to one

Round toward zero

if between two numbers, choose the one nearest to zero

even if it is not the nearest to the real value

Round toward +∞: always round up

Round toward -∞: always round down



Determinism
Floating-point arithmetic is sometimes inaccurate

but it is deterministic:

the result of most operations is precisely defined

we can predict the result of such operations bit-for-bit



Let us denote by  the floating-point representation of the real number fl(x) x

The IEEE-754 standard mandates correct rounding
as specified by the currently-selected rounding mode

for:

addition, negation, subtraction:  x + y  gives fl(x + y)
multiplication, division:  x / y  gives fl(x/y)
square root: sqrt(x) = fl  ( x)
fused multiply-add: fma(x, y, z) = fl(x × y + z)



Division example
When executing

z = x / y

we first take the floating-point numbers x and y, and consider them as if th

(exact, infinite-precision) real numbers

we compute the (exact, infinite-precision) real quotient .x/y
we round the result according to the current rounding mode: fl(x / y)
we store the rounded floating-point value into z



Expression example

(y * (x + 4.0)) / (z - 3.0)

gives:

fl fl(y × fl(x + 4)) / fl(z − 3))( )



About fused multiply-add
Beware:

fma(x, y, z)  x * y + z=

Indeed:

fma(x, y, z) = fl(x × y + z)
but  x * y + z  gives  fl( fl(x × y) + z )



More floating-point non-identities
associativity does not hold:     x + (y + z)  (x + y) + z=
distributivity does not hold:     x * (y + z)  x * y + x * z=



The IEEE-754 standard mandates correct rounding for:
+, -, ×, /, sqrt(), fma()

The IEEE-754 standard does not mandate correct rounding
for most other functions, in particular:

sin, cos, tan

asin, acos, atan

sinh, cosh, tanh

pow, log, log2, log10, exp, exp2, exp10



Floating-point and compilers
C99 and C++03 mandate IEEE-754

which in turn mandates correct rounding for +, -, ×, /, sqrt(), fma

However, if we do not specify a C or C++ standard (e.g. -std=c17 or -std=c

gcc and clang do not follow IEEE-754

they will happily exploit associativity and distributivity

they will replace x * y + z by fma(x, y, z)



Why does correct rounding matter?
(generally) not because of accuracy

but because for any real number , there is exactly one correct roundingx

as a result, there is no ambiguity:

given a set of floating-point numbers

given any expression involving those numbers and +, -, ×, /, sqr

there is exactly one correct answer

which is precisely specified by IEEE-754, down to its bit representation

What happens without correct rounding?



Results can change when:

we change architecture

we change compiler

we change the standard C library

we change the version of the compiler

we change the version of the standard C library

we change our code (even a completely unrelated part)

Note:    If we use sin, cos, log, exp, ..., which are not correctly round
then we are exposed to result changes

whenever we change the version of the standard C library
(which could be dynamically linked!)



(which could be dynamically linked!)

BEYOND FLOATING-POINT ARITHM



Interval arithmetic
We represent every real number 
by a pair of floating-point number 

with .

x ∈ R
(l,u)

x ∈ [l,u]

We exploit the Round toward +∞ and Round toward -∞ modes
to compute the appropriate interval for every operation.



Pros

fast

we always know how accurate a result is

Cons

the interval  o�en becomes large very quickly

(the bounds are usually too pessimistic)

[l,u]



Unum
introduced in 2015, latest revision 2017

For a given fixed bit width, claims better allocation of available precision

optional interval arithmetic

very limited adoption (no hardware support on any mainstream platforms)



The GNU multi-precision library
GMP is a C library that provides support for:

variable-width (a.k.a. arbitrary-size) integers

arbitrary-size rational numbers (i.e. fractions):

where 

fraction =  ,
denominator
numerator

gcd(numerator, denominator) = 1

> gmplib.org

https://gmplib.org/


The GNU MPFR library
MPFR builds on top of GMP to add arbitrary-size floating-point numbers

double x = 22.0 / 7.0;

printf(".20f\n", x);

mpfr_t x;

mpfr_init2(x, 512); // initialize x with 512-bit mantissa

mpfr_set_ui(x, 22, MPFR_RNDN); // set x to value 22, round-to-nearest
mpfr_div_ui(x, 7, MPFR_RNDN); // divide x to 7, round-to-nearest
mpfr_printf("%.200Rf\n", x); // print x

mpfr_clear(x); // free memory

> mpfr.org

https://www.mpfr.org/


Python fractions
Python integers are already variable-width by default:

>>> -2 ** 65

-36893488147419103232 # <-- correct result, no over

Python fractions add support for (variable-width) rationals in top of them

import fractions

a = fractions.Fraction(numerator, denominator)



Why don’t we always use exact rational numbe
convenience (unfortunately)

need to use GMP in C

need “import fractions” in Python

memory

the size of the numerator and denominator can explode in iterative alg

(despite gcd reductions)

speed

since arbitrary-sized integers don’t come with native hardware suppor

operations are much slower (typically 10× for small numbers, then it g



Should we use exact rational numbers more o�e
(in particular when exactness matters)

(or when and speed does not matter)

YES

Symbolic computations



Symbolic computations
In a symbolic algebra system:

 is never evaluated to : 2 ≃ 1.4142

sage: sqrt(8)
2*sqrt(2)

We can also carry variables that have no specific value:

sage: x, y, z = var('x y z')
sage: sqrt(8) * x
2*sqrt(2)*x

This allows us to solve problems symbolically:

sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0], x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]Symbolic algebra systems



SageMath (free so�ware, syntax similar to Python)

Maple

Wolfram Mathematica

> wolframalpha com

https://www.wolframalpha.com/


> wolframalpha.com

https://www.wolframalpha.com/



