Specifications

Part 3: Correctness

Boolean logic, integers
Instructions

Memory

Compiling (clang, make, ...)
Architectures, portability (ABls, ...)

Code management (regex, git)

Specifications <— TODAY
Documentation, testing

Static & dynamic analysis, debugging

CPU pipelines, caches
Data structures

Parallel computation

A note about C

e The Clanguage has deep flaws

e butthe C ABl is everywhere:
= CPU and OS vendors define the ABI for C function calls
s OS services are typically provided via C functions:
o Win32 anxd WinRT (even though WinRT is C++)
o MacOS’s Cocoa uses the Objective-C ABI (a superset of the C ABI)

o Linux kernel ABI

= almost all other languages support calling into C code

The C ABlis simple:

e just functions and simple types: integer, pointer, struct

e no objects or methods:

» What names do we give the symbols for the following?

MyClass: :myFunction(int type);
MyClass: :myFunction(OtherClass &c);

= This?

MyClass__method__int__myFunction
MyClass_ _method__OtherClass_ref_myFunction

= How do we call them? Like this?

MyClass_ _method__int_ myFunction(MyClass *self, int type);
MyClass__method__OtherClass_ref_myFunction(MyClass *self, OtherClass *c);

* no exceptions

e There are multiple C++ ABI specifications
= but they change over time (no “stable” ABI)
= even across versions of the same compiler

e There is no Rust ABI specification

Specifications

bool is_zero(int 1)

{

return 1 == 0;

}

clang -03 -c -0 is_zero.o is_zero.c

1s_zero.c:1:1: error: unknown type name 'bool’

bool is_zero(int 1)
N\

1 error generated.

Google

can i use boolin C

About 31,400,000 results (0.46 seconds)

'bool was added to the C language in 2023.

bool is_zero(int 1)
{
return i == 0;

}

clang -03 -c -std=c2x -0 1s_zero.o 1s_zero.c

T Works!

e Whatis (and is not) valid C?

e Who defines the C language?

e What does -std=c2x mean?

e Pragmatically, C code is valid if your compiler builds an executable that does what you want

e However, there are many compilers

e [t would be convenient if they all agreed on a definition for the C language

SECOND EDITION

THE

e

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

In the beginning, there was K&R C (1978)

e 1978: Kernighan and Ritchie publish their book
e 1983: The American National Standards Institute (ANSI) forms a committee to standardize C

e 1989: The commitee publishes the standard, “ANSI C” / “C89”

e 1990: The International Organization for Standardization (ISO) adopts the standard
e 1999: ISO updates the standard (ANSI adopts it): “C99”

e 2011:1SO update: “C11”

e 2017:1SO update: “C17”

e |SO working on update “C23”, provisionally “C2x” (publication expected October 2024)

Hence -std=c2x (- std=c23 may work with recent compilers)

e A“working group” within ISO: “WG14”
s Compiler writers
» Hardware vendor representatives
= OS maintainers

» Academics

> C23 draft
(742 pages)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3096.pdf

Behaviors

Behavior that depends on local conventions (nationality, culture, and language)
that each implementation documents.

Example:

Whether islower () returns true for characters other than the 26 lowercase Latin letters.

int a = islower('e');

e “Behavior upon which this document provides two or more possibilities and imposes no
further requirements on which is chosen in any instance”

e “Behavior that results from the use of an unspecified value”

Examples

e The order in which the arguments to a function are evaluated.
e Value of padding bytes:

struct s {
char a; // 1 byte
// 3 padding bytes
int b; // 4 bytes
3

Unspecified behavior where each implementation (compiler / platform / OS)
documents how the choice is made

Example

The propagation of the high-order bit when a signed integer is shifted right.

int a = -8;
int b = a >> 1;

On x86_64 and AArch64: sign-extend

“Behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this document imposes no requirements”.

Possibly:

e the situation is completely ignored with unpredictable results,
e implementation-defined behavior

e compilation yields error message

e execution yields error message

e compilation crashes

e execution crashes

e anything else

Undefined behavior

Example

int *a = NULL;
int b = *a;

Undefined behavior

“The result of the / operator is the quotient from the division of the first operand by the second,
the result of the % operator is the remainder.
In both operations, if the value of the second operand is zero, the behavior is undefined.” (p83)

int main(int argc)

{

return 5 / (argc - 1);

}

./main
Floating point exception (core dumped)

#include <stdio.h>

int main()

{
printf("%d\n", 5 / 0),
return 0;

clang -03 -std=c2x -0 main main.c
main.c:3:11: warning: division by zero is undefined [-Wdivision-by-zero]

return 5 / 0;
N ~

./main
-882586408

./main
1687000168

./main
-1071941800

./main
-60110776

0000000000401130 <main>:

401130

401131
401136
401138:
40113d:
40113f:
401140:

50
bf
31
e8
31
59
c3

10 20 40 00
co
f3 fe ff ff
co

push
mov
XOTY
call
XOTY
pPop
ret

rax
edi, 0x402010

eax, eax

401030 <printf@plt>
eax, eax

rCcx

“When integers are divided, the result of the / operator is the algebraic quotient
with any fractional part discarded ("truncation toward zero”).

If the quotient a/b isrepresentable, the expression (a/b)*b + a%b shallequal a ;

otherwise, the behavior of both a/b and a%b isundefined.” (p83)

#include <stdio.h>
#include <limits.h>

void print_if_negative(int a)
{
if (a >= 0)
return;

printf("a = %d\n", a);
printf("a / -1 = %d\n", a / -1);

}

int main()

{
print_if_negative(-5);
return 0;

}

a = -5

a/ -1=2>5

#include <stdio.h>
#include <limits.h>

void print_if_negative(int a)

{
if (a >= 0)
retuxn,;
printf("a = %d\n", a);
printf("a / -1 = %d\n", a / -1);
}
int main()
{
print_if_negative (INT_MIN);
return 0;
}

Reminder: int can represent { —2147483648, . .., 2147483647},

a = -2147483648
a / -1 = -2147483648

#include <stdio.h>
#include <limits.h>

void print_if_negative(int a)

{
if (a >= 0)
return;
printf("a = %d\n", a);
printf("a / -1 = %d\n", a / -1);
if (a / -1 > 0)
printf("a / -1 = %d 1is positive\n", a / -1);
}
int main()
{
print_if_negative (INT_MIN);
return 0;
}
a = -2147483648
a / -1 = -2147483648
a / -1 = -2147483648 is positive

#include <stdio.h>
#include <stdint.h>

int main()

{
uint8_t a = 0;

for (int 1 = 0; 1 < 1000; 1i++)
printf("%012b\n", a);
a=a+1,;

}

return 0;

Note: 1000 > 2% = 256.

000000000000
000000000001
000000000010
000000000011
000000000100

000011111101
000011111110
200011111111
000000000000
000000000001

e Unsigned overflow is not undefined behavior
e Unsigned overflow has wrap-around behavior:
= if 2, 7 are n-bit unsigned integers
o then i + j yields (¢ + j) mod 2"
» for any operation on unsigned n-bit integers,
o the result is the bottom 1 bits of the true arithmetic value

e x86_64 and instruction work in this same way

e x86_64 and AArch64 instruction have wrap-around behavior

e ButinC, signed overflow is undefined behavior!!!

#include <stdio.h>
#include <limits.h>

void print_if_positive(int a)

{

int

Q
+ +

if (a <= 0)

printf("a

return,;

%d\n", a);

printf("a + 1 = %d\n", a + 1);

if (a + 1 > 0)

printf("a + 1 = %d is positive\n", a + 1);

main()

print_if_positive(INT_MAX),

return 0;

2147483647

1
1

-2147483648
-2147483648 1is positive

Pointers in C

A pointers contains a (virtual) address in memory.

e Pointers are declared using the * symbol.

e They are usually accompanied by the type pointed to.

char *pa;

pa contains the memory address of a character.

int *pb;

pb contains the memory address of an int.

struct vec {

int 1;

float x, vy, z;
}o*pc;

pc contains the memory address of a struct vec.

char *pa;
int *pb;
struct vec {
int 1;
float x, vy, z;
}oTpe;

64| 65 |66 |67 68|69 |70 |71 7273747576 |77 |78|7980|8182,83|84|85|86|87|88|389)|90

char int int 1 float x float vy float z

pa pb pc

When a variable is declared as a pointer, its value is the value of the pointer:

char *pa;
/]
printf("address = %p\n", pa); // Prints memory address contained by pa in hex

When we want to access the memory that the pointer points to, we use *:

char *pa;
/]
printf("address = %p, memory content: '%c'\n", pa, *pa);

A this is called dereferencing the pointer.

To take the address of an object in memory, use &:

char *pa;

char a = 'K';

pa = &a,

printf("address = %p, memory content: '%c'\n", pa, *pa); // Prints memory address of a, then 'K'

The compiler uses the pointed type when performing arithmetic on the pointer:

char *pa;

int *pb;

struct vec {
int 1;

float x, v,

} *pc,

Z,

64

65

66

67

68

69 | 70

/1

72

/3

74

75

76

77|78

79

80

81 | 82

83

84

85 | 86

87

88

89 | 90

91

92

char

int

int 1

float x

float vy

float z

pPa

pa + 1

pb + 1

pcC

pc + 1

The array indexing notation in C

int *pb;
// ...
int 1 = pb[10];

Is equivalent to pointer dereferencing:

int *pb;
// ...
int 1 = *(pb + 10);

In particular, the following to lines are equivalent:

int 1
int 1

*pb;
pb[0];

Warning: In a declaration, the pointer and array notations are not synonymous:

int *pb; // <--- this declares a pointer; its initial value is uninitialized
int pb2[40],; // <--- this declarse 40 integers, pb2 is the address of the first one

In C, explicit type conversion (“casting”) is indicated by preceding an object by the new type,
between parenthesis:

char letter = 'A';
int UTF8 _code_for_ letter = (int)letter;

Note in C, many type conversions are performed implicitly:

int UTF8 code_for letter = 'A';

int x = 'x';
int lower case . x = x - '"A' + 'a';

int b;
int *pb = &b;
char *pa = (char *)&b;

64 | 65 | 66 |67 | 68 |69 | /0

int b;

Pa

printf("%d\n", *pa);

// N prints the first 8 bits of b:

// - least significant 8 bits of b if little-endian
// - most significant 8 bits of b if big-endian

for (int 1 = 0; 1 < 10; i++) { for (int 1 = 0;

1 < 10; 1i++) {

printf("%d\n", 1); printf("%p. %d\n", &i, 1);

} }

In the second case, the compiler must act “as if” i was in memory.

The C language specifies that the NULL pointer (address zero) is never valid.

“Ifan invalid value has been assigned to the pointer,
the behavior of the unary *operator is undefined.” (p81)

int int_at(int *pointer)

{

int r = *pointer;

return r;

}

int main()

{
printf("%d", int_at((int *)1));
return 0;

./main
Segmentation fault (core dumped)

int int_at(int *pointer)

{

int r = *pointer;

if (pointer == NULL)
return 0;

return r;

0000000000401110 <int_at>:

401110: 8b 07
401112: c3

mov
ret

eax,DWORD PTR [rdi]

