
Fixed-point and floating-point arithmetic

1

Real numbers

2

How do we represent non-integers?

Keeping in mind:

If we consider bits of memory, their values can take combinations

so we can represent numbers at best

We have a finite amount of memory, so we cannot represent all real numbers.

We want fast operations, so (ideally) we need hardware to perform them.

Hardware has tight limits on the number of logic gates available

meaning we use very few bits (say 16, 32 or 64, like for integers)

… further restricting how many real numbers we can represent

n 2n

2n

3

Practical limitations

Representable integers are restricted in one way:

their range (e.g.)

Representable reals are restricted in two ways:

their range (e.g.)

the number of reals we can represent in that range

(e.g.)

i.e. their precision

[INT_MIN, INT_MAX]

[−10 , 10]308 308

{… , 0, 10 , 2 ×−200 10 , …}−200

4

Fixed-point arithmetic

5

Decimal example

Say we want to represent non-integer monetary amounts.

Instead of computing values in €, we could

use ¢   e.g.   29.99 € = 2999 ¢

then use integer operations.

This is fixed-point arithmetic,

specifically, with 2 decimal places reserved for the fractional part.

6

If / are the elementary integer operations:

euro_to_cent(5 €) = 500 ¢

cent_to_euro(700 ¢) = 7 €

cent_add(700 ¢, 500 ¢) = 1200 ¢

cent_sub(700 ¢, 500 ¢) = 200 ¢

5 € × 7: cent_mul(500 ¢, 700) = 500 × 700 / 100 = 3500 ¢

8 € / 4: cent_div(800 ¢, 400 ¢) = (800 × 100) / 400 = 200 ¢

+, −, ×,

euro_to_cent(e) := e × 100

cent_to_euro(a) := a/100

cent_add(a, b) := a + b

cent_sub(a, b) := a − b

cent_mul(a, b) := (a × b)/100

cent_div(a, b) := (a × 100)/b

7

Binary fixed-point arithmetic

There is no universally accepted standard for fixed-point arithmetic

But there is no real need for one:

Only two parameters:

: total number of bits

: number of bits after the decimal point

All the operations are just integer operations

For mul and div, two integer operations each

n

p

8

Binary example

64-bit integer

32-bit integer part 32-bit fractional part

i64_to_fix(e) := e × 232

fix_to_i64(a) := a/232

fix_add(a, b) := a + b

fix_sub(a, b) := a − b

fix_mul(a, b) := (a × b)/232

fix_div(a, b) := (a × 2)/b32

9

typedef int64_t fix;

static inline fix to_fix(int64_t e)
{

return e << 32;
}

static inline int64_t from_fix(fix a)
{

return a >> 32;
}

static inline fix fix_add(fix a, fix b)
{

return a + b;
}

static inline fix fix_sub(fix a, fix b)
{

return a - b;
}

static inline fix fix_mul(fix a, fix b)
{

return ((__int128)a * b) >> 32;
}

static inline fix fix_div(fix a, fix b)
{

return ((__int128)a << 32) / b;
}

10

Fixed-point arithmetic

Pros:

fast, no need for extra hardware

easy to understand and study (predictable):

uniform absolute precision (e.g. 32 bits, or 9–10 decimal digits over whole range)

Cons:

range is small (e.g.)

precision is limited

e.g. distance between consecutive representable numbers

[−2147483648.999, 2147483647.999]

= 2 ≃−32 0.0000000002328

Possible improvements:

larger range

better absolute precision around zero

lower absolute precision for big numbers
11

Floating-point arithmetic

12

Scientific notation

Take the number :−2147483648.999

= -2.147483648999e+9

​ ​ ​ ​ ​

=
−
−

2147483648.999
2.147483648999 × 109

Similarly, take the number :0.0000000002328

= 2.328e-10

​ ​ ​ ​

=
0.0000000002328

2.328 × 10−10

13

Scientific notation (definition)

-2 . 147483648999 × 10+9

±d . mmmmm... × 10±xxx..

± + or -

d single digit between 1 and 9

mmmmm... predetermined number of digits between 0 and 9

±xxx.. + or -, predetermined number of digits between 0 and 9

14

Binary floating-point numbers

± d . mmmmm... × 2±xxx..

± sign bit + or -

d single bit between 1 and 1

mmmmm... “mantissa” bits

±xxx.. “exponent” bits

Now we just need to all agree on how many bits for each…

15

Floating-point standard

In 1985, the Institute of Electrical and Electronics Engineers publishes standard #754

about floating-point arithmetic (IEEE-754)

Most hardware makers adopt the standard very quickly thereafter

(Intel 30387, launched in 1987, is fully compliant)

x86_64 natively supports binary32 and binary64 formats

AArch64 natively supports binary16, binary32 and binary64 formats

16

component binary16 binary32 binary64

± sign bit 1 1 1

mmmmm... mantissa bits 10 23 52

±xxx.. exponent bits 5 8 11

exponent range -14..15 -126…127 -1022…1023

17

Representation error

Let be the floating-point representation of the real number .

Absolute error:

Relative error:

fl(x) x ∈ R

e ​ =abs ∣fl(x) − x∣

(x = 0)

e ​ =rel ​

∣x∣
∣fl(x) − x∣

18

If we only know (but not itself), we can compute bounds on the error:

Absolute error:

Relative error:

fl(x) x

e ​ ≤abs ​ ∣fl(x) −
y∈R : fl(y)=fl(x)

max y∣

(fl(x) = fl(0))

e ​ ≤abs ​ ​

y∈R : fl(y)=fl(x)
max

∣y∣
∣fl(x) − y∣

19

binary64 vs. fixed-point 32+32

fixed-point 32+32 floating-point binary64

error bound* absolute relative absolute relative

at

at

at

at

at

at

at

at ❌

range

10−9 2.33 × 10−10 0.0233 2.07 × 10−25 2.22 × 10−16

10−6 2.33 × 10−10 2.33 × 10−5 2.12 × 10−22 2.22 × 10−16

10−3 2.33 × 10−10 2.33 × 10−8 2.17 × 10−19 2.22 × 10−16

1 2.33 × 10−10 2.33 × 10−11 2.22 × 10−16 2.22 × 10−16

10+3 2.33 × 10−10 2.33 × 10−14 1.14 × 10−13 2.22 × 10−16

10+6 2.33 × 10−10 2.33 × 10−17 1.16 × 10−10 2.22 × 10−16

10+9 2.33 × 10−10 2.33 × 10−20 1.19 × 10−7 2.22 × 10−16

10+16 2.00 2.22 × 10−16

∣x∣ ≤ 2.15 × 109 ∣x∣ ≤ 1.80 × 10308

* exact numbers depend on “rounding mode”
20

The floating-point number line

21

Languages that mandate IEEE-754 for floating-point

language since binary32 binary64

C C99 float double

C++ C++03 float double

Fortran Fortran 2003 real double

Rust f32 f64

Python ✔

JavaScript ✔

22

Inaccuracy

In base 10,

1/3 ≃ 0.3333
2/3 ≃ 0.6666
1/3 + 2/3 ≃ 0.9999

In base 2,

>>> a = 0.1
>>> f'{a:.50f}'
'0.10000000000000000555111512312578270211815834045410'

23

Numerical instability

Consider the following approximation of the derivative of :f

​f(x) ≃
dx

d
​

δ

f(x + δ) − f(x)

Let us consider the function :f

f(x) = x so ​f(x) =
dx

d
1

and compute its derivative with .δ = 10−6

24

at ,

at ,

at ,

x = 10+5

>>> ((1e+5 + 1e-6) - 1e+5) / 1e-6
0.9999930625781417

x = 10+8

>>> ((1e+8 + 1e-6) - 1e+8) / 1e-6
0.998377799987793

x = 10+10

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6
1.9073486328125

25

What is happening?

At , we first compute (1e+10 + 1e-6)

which is a big number, close to 1e+10

floating-point numbers have a good relative accuracy everywhere,

but at , the absolute accuracy is not great,

so the result of (1e+10 + 1e-6) may be off by roughly

We then subtract 1e+10.

If we were using exact arithmetic, we would get 1e-6 exactly,

but we are using floating-point arithmetic,

so we get something close to 1e-6…

… but potentially off by roughly

We divide by 1e-6,

and get a number in

>>> ((1e+10 + 1e-6) - 1e+10) / 1e-6
1.9073486328125

x = 10+10

≃ 2.22 × 10−16

10+10 ≃ 1.91 × 10−6

1.91 × 10−6

1.91 × 10−6

[1 − 1.91, 1 + 1.91]
26

Therefore,

floating-point accuracy is often great

but some algorithms are unstable

we need to be extremely careful before trusting floating-point results

27

Never do exact comparisons

>>> 0.1 + 0.2 == 0.3
False

>>> 1.0 + 1e-16 <= 1.0
True

28

So how do we do comparisons?

If exact comparisons are important, do not use floating-point arithmetic.

If we care about speed and can tolerate some errors…

29

>>> 0.1 + 0.2 == 0.3
False

becomes

>>> tolerance = 1e-10
>>> abs((0.1 + 0.2) - 0.3) <= tolerance
True

>>> x >= 0.0

becomes

>>> x >= -tolerance

30

Floating-point rounding

31

Given a floating point number , we want to compute .a x = a/3

Q: If cannot be represented exactly by a floating-point number,
what value do we give ?

a/3
x

A: We “round” to the floating-point number “closest” to the real value .x a/3

32

Rounding modes

Round to nearest, ties to even (default)

nearest value

in case of ties, set last mantissa bit to zero

Round to nearest, ties away from zero

nearest value

in case of ties, set last mantissa bit to one

Round toward zero

if between two numbers, choose the one nearest to zero

even if it is not the nearest to the real value

Round toward +∞: always round up

Round toward -∞: always round down

33

Determinism

Floating-point arithmetic is sometimes inaccurate

but it is deterministic:

the result of most operations is precisely defined

we can predict the result of such operations bit-for-bit

34

Let us denote by the floating-point representation of the real number .fl(x) x ∈ R

The IEEE-754 standard mandates correct rounding
as specified by the currently-selected rounding mode
for:

addition, negation, subtraction: x + y gives

multiplication, division: x / y gives

square root:

fused multiply-add:

fl(x + y)
fl(x/y)

sqrt(x) = fl ​(x)
fma(x, y, z) = fl(x × y + z)

35

Division example

When executing

we first take the floating-point numbers x and y, and consider them as if the were

(exact, infinite-precision) real numbers

we compute the (exact, infinite-precision) real quotient .

we round the result according to the current rounding mode:

we store the rounded floating-point value into z

z = x / y

x/y
fl(x / y)

36

Expression example

(y * (x + 4.0)) / (z - 3.0)

gives:

fl fl(y × fl(x + 4)) / fl(z − 3))()

37

About fused multiply-add

Beware:

fma(x, y, z) x * y + z=

Indeed:

but x * y + z gives

fma(x, y, z) = fl(x × y + z)
fl(fl(x × y) + z)

38

More floating-point non-identities

associativity does not hold: x + (y + z) (x + y) + z

distributivity does not hold: x * (y + z) x * y + x * z

=

=

39

The IEEE-754 standard mandates correct rounding for:
+, -, ×, /, sqrt(), fma()

The IEEE-754 standard does not mandate correct rounding
for most other functions, in particular:

sin, cos, tan

asin, acos, atan

sinh, cosh, tanh

pow, log, log2, log10, exp, exp2, exp10

40

Floating-point and compilers

C99 and C++03 mandate IEEE-754

which in turn mandates correct rounding for +, -, ×, /, sqrt(), fma().

However, if we do not specify a C or C++ standard (e.g. -std=c17 or -std=c++20),

gcc and clang do not follow IEEE-754

they will associate and distribute (as if associativity and distributivity held)

they will replace x * y + z by fma(x, y, z)

41

Why does correct rounding matter?

(generally) not because of accuracy

but because for any real number , there is exactly one correct rounding

as a result, there is no ambiguity:

given a set of floating-point numbers

given any expression involving those numbers and +, -, ×, /, sqrt(), fma()

there is exactly one correct answer

which is precisely specified by IEEE-754, down to its bit representation

x

42

What happens without correct rounding?

Results can change when:

we change architecture

we change compiler

we change the standard C library

we change the version of the compiler

we change the version of the standard C library

we change our code (even a completely unrelated part)

Note: If we use sin, cos, log, exp, ..., which are not correctly rounded,
then we are exposed to result changes
whenever we change the version of the standard C library
(which could be dynamically linked!)

43

Beyond floating-point arithmetic

44

Interval arithmetic

We represent every real number
by a pair of floating-point number
with .

x ∈ R
(l,u)

x ∈ [l,u]

We exploit the Round toward +∞ and Round toward -∞ modes
to compute the appropriate interval for every operation.

45

Pros

fast

we always know how accurate a result is

Cons

the interval often becomes large very quickly

(the bounds are usually too pessimistic)

[l,u]

46

Unum

introduced in 2015, latest revision 2017

For a given fixed bit width, claims better allocation of available precision

optional interval arithmetic

very limited adoption (no hardware support on any mainstream platforms)

47

The GNU multi-precision library

GMP is a C library that provides support for:

variable-width (a.k.a. arbitrary-size) integers

arbitrary-size rational numbers (i.e. fractions):

where

fraction = ​ ,
denominator
numerator

gcd(numerator, denominator) = 1

> gmplib.org

48

https://gmplib.org/

The GNU MPFR library

MPFR builds on top of GMP to add arbitrary-size floating-point numbers

double x = 22.0 / 7.0;

printf(".20f\n", x);

mpfr_t x;

mpfr_init2(x, 512); // initialize x with 512-bit mantissa

mpfr_set_ui(x, 22, MPFR_RNDN); // set x to value 22, round-to-nearest
mpfr_div_ui(x, 7, MPFR_RNDN); // divide x to 7, round-to-nearest
mpfr_printf("%.200Rf\n", x); // print x

mpfr_clear(x); // free memory

> mpfr.org

49

https://www.mpfr.org/

Python fractions

Python integers are already variable-width by default:

>>> -2 ** 65

-36893488147419103232 # <-- correct result, no overflow

Python fractions add support for (variable-width) rationals in top of them:

import fractions

a = fractions.Fraction(numerator, denominator)

50

Why don’t we always use exact rational numbers?

convenience (unfortunately)

need to use GMP in C

need “import fractions” in Python

memory

the size of the numerator and denominator can explode in iterative algorithms

(despite gcd reductions)

speed

since arbitrary-sized integers don’t come with native hardware support,

operations are much slower (typically 10× for small numbers, then it grows with size)

51

Should we use exact rational numbers more often?

(in particular when exactness matters)

(or when and speed does not matter)

YES

52

Symbolic computations

In a symbolic algebra system:

 is never evaluated to :

We can also carry variables that have no specific value:

This allows us to solve problems symbolically:

​2 ≃ 1.4142

sage: sqrt(8)
2*sqrt(2)

sage: x, y, z = var('x y z')
sage: sqrt(8) * x
2*sqrt(2)*x

sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0], x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]

53

Symbolic algebra systems

SageMath (free software, syntax similar to Python)

Maple

Wolfram Mathematica

> wolframalpha.com
54

https://www.wolframalpha.com/

55

