Tools for correctness, part 1

Boolean logic, integers
Instructions

Memory

Compiling (clang, make, ...)
Architectures, portability (ABls, ...)

Code management (regex, git)

Specifications
Documentation, testing <— TODAY
Static & dynamic analysis, debugging

CPU pipelines, caches
Data structures

Parallel computation

Documentation

Documentation is GOOD

e Allows others to understand your code

e Allows you (in a few weeks) to understand your own code

e Helps make your thought process and assumptions explicit

e Reference manuals
= Complete, authoritative source of information
(if the code does not do what the manual says, then the code is wrong)
= Must use precise language (even at the cost of legibility)

= Examples: “man” pages, ABI docs, C standard, IEEE-754 specifications

» Beginner-friendly. Emphasize getting things to work quickly
(even at the cost of completeness)
» Examples: various books (K&R C, Think Python) and intro material
e Questions and answers (Q&A)
= Not exhaustive
= Quick answers to frequently asked questions

» Examples: Stack Overflow

Automated documentation systems

e read and parse source code

e find functions (methods, classes, ...)

e create a (PDF or webpage) document containing function signatures

e specially-formatted comments in the source code are copied into the documentation

along with the corresponding function signatures

Doxygen

O Q, Search or go to... B libeigen > @ eigen
Project 327 /%% This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
) 328 * Thus, doing
lﬂ SI9ED 329 * \code
8 Manage , 330 * m.transposeInPlace();
331 * \endcode
Plan 5 Do * has the same effect on m as doing
355 * \code
</> Code N 334 * m = m.transpose().eval();
a5 * \endcode
q? Build 3 336 * and is faster and also safer because in the latter line of code, forgetting the eval() results
£ 3 * in a bug caused by \ref TopicAliasing "aliasing".
) Deploy > 338 *
339 * Notice however that this method is only useful if you want to replace a matrix by its own transpose.
%@ Operate > 340 * If you just need the transpose of a matrix, use transpose().
341 *
2 Monitor > 342 * \note if the matrix is not square, then \c *this must be a resizable matrix.
343 * This excludes (non-square) fixed-size matrices, block-expressions and maps.
I Analyze > 344 "

345 * \sa transpose(), adjoint(), adjointInPlace() */
346 template<typename Derived>
347 EIGEN_DEVICE_FUNC inline void DenseBase<Derived>::transposeInPlace()

348 {

349 eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic))
350 &% "transposeInPlace() called on a non-sguare non-resizable matrix");

a5l internal::inplace_transpose_selector<Derived>::run(derived());

352 }

4 r

selLinopaceq

setOnes
setRandom * tranSp{JSEInPIace()
setZero
template<typename Derived >
sum
swap void Eigen::DenseBase< Derived >::transposelnPlace
swap
transpose This is the "in place" version of transpose(): it replaces *this by its own transpose. Thus, doing

m.transposelnPlace();

transposelnPlace

value has the same effect on m as doing

L m = m.transpose().eval();

Zero

Zero and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Zarn i

Notice however that this method is only useful if you want to replace a matrix by its own transpose. If you just need the transpose of a
Table of contents

matrix, use transpose().
J Detailed Description

J Public Types Note

Js Public Member Functions

if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-
s Static Public Member Functions

Js Protected Member Functions EXPressions and maps.
J Related Functions

: See also
J Member Typedef Documentation

L6 cobict TEeratar transpose(), adjoint(), adjointinPlace()
J & iterator

J # PlainArray

J & PlainMatrix

J # PlainObject

def complex(real=0.0, imag=0.0):
"""Form a complex number.

Keyword arguments:
real -- the real part (default 0.0)

imag -- the imaginary part (default 0.0)

irrn

if imag == 0.0 and real == 0.0:
return complex_zero

e General:
= doxygen

= sphinx

e Python-specific:
= pdoc
= PyDoc
= pydoctor

Assertions

e Assertions are used to document (and check) assumptions made in the code.

e An assertion failure
= should correspond to a bug in your code,
= in Python, raises AssertionError exception

= in C, triggers an immediate crash (abort()) of your program.

def gcd(a, b):
if a < b:
a, b =0Db, a

while b != 0:
assert a >= b
a, b=D>b, a%b

return a

<---- this should always be true

#include <assert.h>

int gcd(int a, int b)
{

if (a < b) {
int r = a;
a =b;
b =r1;

}

while (b !'= 0) {
assert(a >= b);

int r =a %b;
a =Db;
b = 1;

}

return a;

// <---- this should always be true

Disabling assertions

In Python:

python -0 script.py

In C:

clang -D NDEBUG -Wall -03 -0 main main.c

(equivalent to

#define NDEBUG

at the beginning of every file)

e an error happens when, for external reasons, your program cannot run

= examples: out of memory, file cannot be read, network unreachable

e an assertion fails if a fundamental assumption in your code is violated

» indicates a bug in your code

Testing

/*
This functions returns:
7, if both of its arguments are zero
nonzero 1f one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{
if (a !'= 0)
a = 1;
if (b = 0)
b =1;
return (a | b) == 1;
}

volid run_tests_0()

{
assert(either_nonzero(5, 5) !'= 0);
assert(eithexr_nonzero(0, 5) != 0);
printf("OK\n");

Test coverage

e line coverage:

is every line of code covered by some test case?

e branch coverage:
for every conditional branch, is there a test covering each of the two possibilities

(taking the branch or not taking it)?

e path coverage:

is there a test covering all possible execution paths?

gcc -Wall -03 --coverage -c -o either_nonzero.o either_nonzero.c
gcc -Wall -03 --coverage -0 run main.c either_nonzero.o

./run_tests

OK

gcov either_nonzero.c

File 'either_nonzero.c'
Lines executed:100.00% of 4
Creating 'either_nonzero.c.gcov'

Lines executed:100.00% of 4

gcov -b either_nonzero.c

File 'either_nonzero.c'

Lines executed:100.00% of 4
Branches executed:100.00% of 4
Taken at least once:75.00% of 4
No calls

Creating 'either_nonzero.c.gcov'

Lines executed:100.00% of 4

function either _nonzero called 2 returned 100% blocks executed 100%

2: 4:int either_nonzero(int a, int b)
- 5:{
2: 6: if (a !'= 0)
branch @ taken 50% (fallthrough)
branch 1 taken 50%
- 7 a =1,
- 8:
2: 9: if (b != 0)

branch @ taken 100% (fallthrough)
branch 1 taken 0%

- 10: b =1;
- 11:

2: 12: return (a | b) == 1;
: 13:}

/*
This functions returns:
7, if both of its arguments are zero
nonzero 1f one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{
if (a !'= 0)
a = 1;
if (b = 0)
b =1;
return (a | b) == 1;
}

volid run_tests_0()

{
assert(either_nonzero(5, 5) !'= 0);
assert(eithexr_nonzero(0, 5) != 0);
printf("OK\n");

/7(-
This functions returns:

nonzero 1f one or both of its arguments are nonzero

9 if both of its arguments are zero
*/
int either_nonzero(int a, int b)
{
if (a '=0
a = 1,;
if (b !'= 0)
b =1;
return (a | b) == 1;
}

void run_tests_ x()

{

assert(either_nonzero(5, 5)
printf("OK\n");

Line coverage: 100%

= 0),

Branch coverage: 50%

/*
This functions returns:

nonzero 1t one or both of its arguments are nonzero

7, if both of its arguments are zero
*/
int either_nonzero(int a, int b)
{
if (a !'= 0)
a =1,
if (b = 0)
b =1;

return (a | b) == 1;

void run_tests_y()

{
assert(either_nonzero(0, 0)
assert(either_nonzero(®, 5)
assert(either_nonzero(5, 0)
printf("OK\n");

}

Line coverage: 100%

== 0);

= 0),
'=0),

Branch coverage: 100%

Path coverage: 75%

gcc -Wall -03 --coverage -c -o either_nonzero.o either_nonzero.c

/*
This functions returns:
9 if both of its arguments are zero
nonzero 1f one or both of its arguments are nonzero
*/
int either_nonzero(int a, int b)
{
line_covered(6);
if (a !'= 0) { // 1ine 6
branch_covered(6, 1);
line_covered(7);
a=1; // line 7
} else {
branch_covered(6, 0);

}

line_covered(9);
if (b 1= 0) { // 1line 9
branch_covered(9, 1);
line_covered(10) ;
b =1; // 1line 10
} else {
branch_covered(9, 0);

}

line_covered(12);
return (a | b) == 1; // line 12

/7(-
This functions returns:

7, if both of its arguments are zero
nonzero 1f one or both of its arqguments are nonzero
*/
int either_nonzero WRONG_1(int a, int b)
{
if (a =0
a =1,
if (b = 0)
b =1,

return (a + b) == 1;

void run_tests 1()

{
assert(either_nonzero WRONG_1(@, @) == 0);
assert(either_nonzero WRONG_1(@, 5) != 0);
assert(either_nonzero_WRONG_1(5, 0) '= 0);
//assert(either _nonzero WRONG _1(5, 5) I=0); // <-- this one fails
printf("O0K\n");

}

Line coverage: 100% Branch coverage: 100%

Path coverage: 75%

/*
This functions returns:

Zero

7, if both of its arguments are

nonzero 1f one or both of its arguments are nonzero
*/
int either_nonzero WRONG_2(int a, int b)
{

return a + b;

}

void run_tests _2()

{
assert(either_nonzero WRONG_2(0, 0) ==
assert(either_nonzero WRONG_2(@, 5) !=
assert(either_nonzero WRONG 2(5, 0) !'=
assert(either_nonzero WRONG_2(5, 5) !=
//assert(either _nonzero WRONG 2(5, -5)
printf("OK\n");

}

Line coverage: 100%

0),;
0);
0),;
0);
I=09); // <-- this one fails

Branch coverage: 100%

Path coverage: 100%

Fuzzing

Assertions and tests are useful

but only if we have good test cases

and enough of them

—> How do we generate good tests?

On a basic level, a fuzzer proceeds as follows:

1. take a (mostly valid) example input file

2. run the tested program with that input file

3. check for crashes (e.g. segmentation fault, assertion failures)

4. modify the input file:
e random modifications
e truncations, duplications

e mergers with other example input files

5.go backto 2

Advanced fuzzers

e use test coverage techniques
to determine which input files are “interesting”,

in that they cover previously-uncovered source code

e use static analysis techniques

to determine input file modifications that could trigger specific code branches

e open source project (https://aflplus.plus/)
e takes as an input a directory with many example input files

e generates modified input files that yield crashes

afl-fuzz -1 directory/with/example/inputs/ -o directory/for/crash/files/ -- ./executable @@

american fuzzy lop : (../examples/glpsol) [fast]
, @ min, 17 sec
, @ min, 6 sec 93
B
&

EI " 2 5 I:Il:l ."'II E] . 2 E I:Il:l
3.94 bits/tuple
6 (6.

8 (8.

disa (default, enable with -
disabled (default, enable with -
led (default, enable with -
ed (default, enable with -

8/23.5 |-'{
sed, unused, unused
/96, disabled
: explore state: started :-]

https://aflplus.plus/

