Tools for correctness, part 2

Boolean logic, integers
Instructions

Memory

Compiling (clang, make, ...)
Architectures, portability (ABls, ...)

Code management (regex, git)

= Specifications

= Documentation, testing

s Static & dynamic analysis, <— TODAY
debugging

= CPU pipelines, caches

m Data structures

= Parallel computation

Static code analysis

e Static analysis operates on the source code

(before any assembly or executable code is produced)

e Compilers do advanced case analysis on the code
(in order to produce faster code)

e The same analysis can be used to find (potential) bugs

e Not an exact science
» Relies on heuristics to detect hazardous code

n Suffers from false negatives and false positives

If you use a Makefile, run

scan-build make

> result

https://www.poirrier.ca/courses/softeng-2023/slides/scan-build-example/index.html

e A“linter” is a static analyzer

e Typically, linters enforce a specific coding style

Examples:
e Pylint
o flake8
e mypy (adds static type checking)

def fib(n): def fib(n: int) -> Iterator[int]:
a, b=20,1 a, b=20,1
while a < n: while a < n:
yield a yield a
a, b =Db, atb a, b =0Db, atb

Dynamic code analysis

e Dynamic analysis operates on the running executable
(during testing)

e by adding runtime checks

e can find more bugs than static analysis...

e ...butonlyforthose bugs are triggered by some test!

With sanitizers, runtime checks are added by the compiler.

e The “undefined behavior sanitizer” detects many types of undefined behavior (at runtime)

e triggers an immediate crash (with an explanation message)

e Pass “-fsanitize=undefined” to gcc orclang

#include <stdio.h>
#include <stdlib.h>

int f(int a, int b)

{
printf("a = %d, b = %d\n", a, b);
int r = a / b;
printf("We survived!\n");
return r;
}
int main(int argc, char **argv)
{
int i = (argc < 2) ? 5 : strtol(argv[1l], NULL, @),
int r = (10, 1);
printf("r = %d\n", 1);
}

Without UBSan:

gcc -03 -o timetravel timetravel.c
./timetravel 0

a =10, b = 0
We survived!
Floating point exception (core dumped)

With UBSan:

clang -03 -fsanitize=undefined -0 timetravel timetravel.c
./timetravel 0

a =10, b = 0

timetravel.c:8:12: runtime error: division by zero

SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior timetravel.c:8:12 in

UndefinedBehaviorSanitizer:DEADLYSIGNAL

==3245281==ERROR: UndefinedBehaviorSanitizer: FPE on unknown address 0x00000042b43d (pc 0x00000042b43d bp Ox7ffdb30690f0 sp
#0 0x42b43d in f /home/poirrier/courses/softeng/code/std/timetravel.c:8:12
#1 0x42b43d in main /home/poirrier/courses/softeng/code/std/timetravel.c:18:10
#2 Ox7fd43af4db89 in _ libc_start _call main (/1ib64/1ibc.so.6+0x27b89) (BuildId: 3ebe8d97a@ed3elf13476a02665c5a9442adcd
#3 0Ox7fd43af4dcd4a in __libc_start _main@GLIBC_ 2.2.5 (/1ib64/1ibc.so.6+0x27c4a) (BuildId: 3ebe8d97a0ed3elf13476a02665c5a9
#4 0x4033d4 in _start (/home/poirrier/courses/softeng/code/std/timetravel+@x4033d4) (BuildId: a42ae4bf9188c9d93ff828ccd

UndefinedBehaviorSanitizer can not provide additional info.
SUMMARY: UndefinedBehaviorSanitizer: FPE /home/poirrier/courses/softeng/code/std/timetravel.c:8:12 in f
==3245281==ABORTING

#include <stdlib.h>
#include <stdio.h>

static int (*function_pointer) ();

static int erase_all_files()

{
return printf("Deleting all your files\n");
}
void this_function_is never called()
{
function_pointer = erase_all_files;
}

int main() {
return (*function_pointer) ();

}

clang -03 -fsanitize=undefined -o ub_del ub_del.c
./ub_del

Deleting all your files

Pros

cons

Fixes (in some cases) the anything-can-happen problem with undefined behavior.
We get a crash with an explanation instead.

No false positives

Not all types of undefined behavior detected (most are)
Does not always stop the compiler from exploiting undefined behavior

Overhead (~3x slowdown)

Needs good tests (good in combination with fuzzing)

The “address sanitizer” detects many types memory access errors (at runtime)

Separate from UBSan because it uses different mechanisms

triggers an immediate crash (with an explanation message)

Pass “-fsanitize=address” to gcc or clang

#include <stdio.h>
char *f()
{ char buffer[16];
snprintf(buffer, sizeof(buffer), "Hello");

return buffer;

}
int main()
{
char *s = f();
printf("Here is the return value of f():\n");
printf("%s\n", s);
return 0;
}

clang -03 -fsanitize=address -o bug bug.c
. /bug

Here is the return value of f():

==3245688==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7f604b800020 at pc 0x00000043cd41l bp Ox7ffd5bb0da70
READ of size 1 at 0x7f604b800020 thread TO
#0 0x43cd4@ in puts (/home/poirrier/courses/softeng/code/std/bug+@x43cd4@) (BuildId: fd60803d545d3b62b6353b1498d16el7a
#1 0x4f39d1 in main (/home/poirrier/courses/softeng/code/std/bug+0x4f39dl) (BuildId: fd60803d545d3b62b6353b1498d16el7a
#2 0x7f604d60db89 in _ 1libc_start call main (/1ib64/1ibc.so.6+0x27b89) (BuildId: 3ebe8d97a@ed3elf13476a02665c5a9442adc
#3 Ox7f604d60dcd4a in __ libc_start main@GLIBC 2.2.5 (/1ib64/1ibc.so.6+0x27c4a) (BuildId: 3ebe8d97a@ed3elf13476a02665c5a
#4 0x41d324 in _start (/home/poirrier/courses/softeng/code/std/bug+@x41d324) (BuildId: fd60803d545d3b62b6353b1498d16el

Address Ox7f604b800020 is located in stack of thread T@ at offset 32 in frame
#0 0x4f393f in main (/home/poirrier/courses/softeng/code/std/bug+0x4f393f) (BuildId: fd60803d545d3b62b6353b1498d16el7a

This frame has 1 object(s):
[32, 48) 'buffer.i' <== Memory access at offset 32 is inside this variable

e Out-of-bounds accesses to heap, stack and globals

int a[l1l0];

printf("%d\n", a[20]),

e Use-after-free

free(pointer);

printf("%d\n", *pointer);

e Use-after-return

int *f()

{
int a[l1l0];
return a;

}

void g()
{

int *pointer =
printf("%d\n",

e Use-after-scope

void g()
{
int *pointer;
if (1) {
int a[l1l0];
pointer =
}

printf("%d\n",

(),

pointer[Q]);

a,

pointer[Q]);

e Double-free, invalid free

volid *other_pointer = pointer;

free(pointer);
free(other_pointer);

int a[l1l0];
free(a);

e Memory leaks

void f()
{

void *ptr = malloc(10);
}

Pros

cons

Detects most memory issues

No false positives

Not every memory issue detected (many are)
Speed overhead (~2x slowdown)
Memory overhead (~2x memory usage)

Needs good tests (good in combination with fuzzing)

e Valgrind adds runtime checks on already-compiled executable.

e |tisahybridinterpreter/ JIT compiler for machine code.

e |t adds checks around all memory accesses.

» Detects uses of invalid pointers (incl. uninitialized memory)

s Detects memory leaks (at exit)

For readable debug messages, Valgrind requires compiling with the “-ggdb” option (gcc / clang)

valgrind --leak-check=full ./truthtable all ../data/parse_04.cnf

3244248== Memcheck, a memory error detector

3244248== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
3244248== Using Valgrind-3.21.0 and LibVEX; rerxun with -h for copyright info
3244248== Command: ./truthtable all ../data/parse_04.cnf

3

3244248== For lists of detected and suppressed errors, rerun with: -s
3244248== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: @ from 0)

244248==
../data/parse_04.cnf: -3 is out of bounds (n = 2)
==3244248==
==3244248== HEAP SUMMARY :
==3244248== in use at exit: 262,144 bytes in 1 blocks
==3244248== total heap usage: 3 allocs, 2 frees, 266,712 bytes allocated
==3244248==
==3244248== 262,144 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3244248== at 0x484182F: malloc (vg_replace_malloc.c:431)
==3244248== by Ox4023EF: di_push (parse.c:94)
==3244248== by 0x4023EF: dimacs_parse_f (parse.c:215)
==3244248== by 0x402541: dimacs_parse (parse.c:268)
==3244248== by 0x401201: run (main.c:12)
==3244248== by 0x401201: main (main.c:62)
==3244248==
==3244248== LEAK SUMMARY:
==3244248== definitely lost: 262,144 bytes in 1 blocks
==3244248== indirectly lost: @ bytes in @ blocks
==3244248== possibly lost: @ bytes in @ blocks
==3244248== still reachable: @ bytes in @ blocks
==3244248== suppressed: @ bytes in @ blocks
==3244248==

Pros

cons

e Detects almost all memory issues (that happen at runtime)

e Large overhead (~10x slowdown)

e Needs good tests (good in combination with fuzzing)

Debugging techiques

e The basic approach to debugging is:

Check that what we think is true is actually true.
e Narrow down the precise point at which execution deviates from our assumptions
e \We can use

= assertions: assexrt/ assert()
s debugging messages: print() / printf()

= machine-readable output

void perform_actions(struct state *s)
{

action_a(s);

action_b(s);

action_c(s);

action_d(s);

action_e(s);

void perform_actions(struct state *s)

{
printf("Action A...\n");
action_a(s);
printf("Action B...\n");
action_b(s);
printf("Action C...\n");
action_c(s);
printf("Action D...\n");
action_d(s);
printf("Action E...\n");
action_e(s);
printf("Actions done.\n");

Action A...
Action B...
Action C...
Segmentation fault

— crash inaction_c () assuming no time-traveling UB.

def matrix_inverse(mtx):

return result

def matrix_inverse(mtx):

error_matrix = mtx * result - matrix_identity()
matrix_write(mtx, "mtx.m")

matrix_write(result, "result.m")

assert matrix_norm(error_matrix) < le-5

return result

assume our matrix_inverse() code hasabug
we find a wrong result for a specific 2000x2000 matrix

how do we proceed?

we would like to instrument matrix_inverse() by printing the matrix at each step,

but a 2000x2000 matrix is too large to visualize

o Input: A € R*»*"

o Step 1: construct B € R™*™ by selecting an arbitrary square submatrix of A

o Step 2:test matrix_inverse() on B
o Step 3:if matrix_inverse(B) failsagain,then A := B
e Step 4: go backtoStep 1

Example approach:

o atfirst we can try removing a random half of the rows and columns of A
o if it fails repeatedly, we try to remove fewer rows and columns of A

o if it fails again, we remove a single row and column of A

This process can be automated!

Given an alphabetically-ordered list of n words

acre
airlock
embassy
helicopter
iron

log
olive
puddle
skeleton
trouble
virus
whey
zoology

determine if the word

pen

Is part of the list.

Checking every word one by one until a word is alphabetically after pen: O(n)

Bisection: O (log(n)) expected complexity

acre
airlock

embassy

helicopter

iron

log

olive <-- midpoint, before pen
puddle

skeleton

trouble

virus

whey

zoology

acre
airlock
embassy
helicopter
iron

log

olive

puddle
skeleton
trouble <-- midpoint, after pen
virus
whey
zoology

acre
airlock
embassy
helicopter
iron

log

olive

puddle <-- midpoint, after pen
skeleton

trouble
virus
whey
zoology

acre
airlock
embassy
helicopter
iron

log

olive
puddle
skeleton
trouble
virus

whey
zoology

(pen not found)

void perform_actions(struct state *s)
{

action_000(s) ;

action_001(s) ;

action_002(s) ;

action_998(s) ;
action_999(s) ;

void perform_actions(struct state *s)
{
printf("First action...\n");
action_000(s) ;
action_001(s) ;
action_002(s) ;

printf("Action 500...\n");
action_500(s) ;

action_998(s) ;
action_999(s);
printf("Actions done.\n");

First action...
Action 500. ..
Segmentation fault

— crash between 500 and 999 (assuming no time-traveling UB).

void perform_actions(struct state *s)

{
printf("First action...\n");

action_000(s) ;

printf("Action 500...\n");
action_500(s) ;

printf("Action 750@...\n");
action_750(s);

action_999(s);
printf("Actions done.\n");

First action...
Action 500. ..
Action 750. ..
Segmentation fault

—> crash between 750 and 999.

void perform_actions(struct state *s)

{
printf("First action...\n");
action_000(s) ;
printf("Action 500...\n");
action_500(s)
printf("Action 750...\n");
action_750(s)
printf("Action 875...\n");
action_875(s);
action_999(s);
printf("Actions done.\n");

}

First action...
Action 500. ..
Action 750...
Segmentation fault

— crash between 750 and 875.

void perform_actions(struct state *s)
{

printf("First action...\n");
action_000(s);

printf("Action 500...\n");
action_500(s) ;

printf("Action 750@...\n");
action_750(s) ;

printf("Action 812...\n");
action_812(s);

printf("Action 875...\n");
action_875(s);

action_999(s);
printf("Actions done.\n");

First action...
Action 500...
Action 750. ..
Action 812...
Segmentation fault

—> crash between 812 and 875.

git log --oneline

9e9ebfcC
ff3c21b
fd49178
85afed3
77t8759
6371374
47b578b
1daddof
60@a534a
6f3c377
b2daa9b

(HEAD -> main, origin/main) Added perf version check.
Changed branch mispredict ratio displayed.

Silently ignore branch events.

Support new perf-script brstack format with added spaces.
Made perf script output parsing more lenient.

Version bump.

Fixed erroneous use of atime, should have been mtime.
Moved objdump cache to /tmp.

Added caching of objdump output.

Some debugging code.

Updated version.

git log --oneline

9e9ebfcC
ff3c21b
Td49178
85afed3
7718759
6371374

47b578b
1daddof
60a534a
6f3c377
b2daa9b

(HEAD -> main, origin/main) Added perf version check. < test this
Changed branch mispredict ratio displayed.

Silently ignore branch events.

Support new perf-script brstack format with added spaces.

Made perf script output parsing more lenient.

Version bump. < test this

Fixed erroneous use of atime, should have been mtime.
Moved objdump cache to /tmp.

Added caching of objdump output.

Some debugging code.

Updated version. < test this

Debuggers

A debuggeris a tool that allows us to run our code step-by-step (e.g. line by line)
Between each step, we can examine

= program

= program (i.e. variables)

Debuggers for interpreted languages are language-specific

Debuggers for compiled languages work at the assembly level

