
LECTURE 18

1

HARDWARE PERFORMANCE COUNTERS

2

The simplest hardware-aided performance-measuring tool is:

the time stamp counter (TSC)

Introduced by Intel with the Pentium architecture (1993)

Similar feature available on ARM since ARMv7 (1996)

Special integer register

Incremented by one at a constant rate (e.g. every clock cycle)

Reading this register has high latency (>10 cycles)

Useful for microbenchmarks and instrumentation

time.time() / clock_gettime() use this internally

3

More complex performance counters
Since then, Intel and ARM have added many more performance counters:

executed (“retired”) instructions

branches

successfully predicted

mispredicted branches

memory accesses

found in L1 cache

L1 misses, found in L2 cache

L2 misses, found in (last-level) L3 cache

L3 misses, found in main memory

TLB (page table cache) hits

TLB misses

Pros

always measured

no performance penalty

no interference with normal execution

Cons

only an aggregate measure (totals)

4

Linux perf
perf stat ./application

Performance counter stats for './application':

3,216.90 msec task-clock # 1.000 CPUs utilized
8 context-switches # 2.487 /sec
1 cpu-migrations # 0.311 /sec

6,205 page-faults # 1.929 K/sec
9,442,508,623 cycles # 2.935 GHz (52.90%)
7,596,331,032 instructions # 0.80 insn per cycle (58.81%)
1,086,117,213 branches # 337.629 M/sec (58.84%)

1,085,287 branch-misses # 0.10% of all branches (58.87%)
2,162,685,901 L1-dcache-loads # 672.289 M/sec (58.87%)
1,079,393,101 L1-dcache-load-misses # 49.91% of all L1-dcache accesses (58.88%)
1,069,062,732 LLC-loads # 332.327 M/sec (58.87%)

6,537,301 LLC-load-misses # 0.61% of all L1-icache accesses (23.50%)
2,161,850,109 dTLB-loads # 672.029 M/sec (23.50%)

896,301 dTLB-load-misses # 0.04% of all dTLB cache accesses (23.50%)
9,051,173 dTLB-stores # 2.814 M/sec (23.50%)

81,624 dTLB-store-misses # 25.374 K/sec (23.50%)

3.217829387 seconds time elapsed

3.167788000 seconds user
0.022723000 seconds sys

5

STOCHASTIC INSTRUMENTATION

6

Limitations of performance counters
How could we find hot spots

(small groups of instructions that the application spends a lot of time running)

What about performance counts (cache misses, mispredicted branches,…)

at those hot spots?

Instrumentation is expensive (and affects accuracy)

7

Solution: stochastic instrumentation

every N cycles (e.g. every 1,000,000th cycle / every 0.1ms), a sample is taken

the sample records:

which instruction is currently being executed

optionally, what it is waiting for (instr. decoding, pipeline bubble, memory access, …)

optionally, instruction addresses of the last few branches

optionally, whether those branches were successfully predicted

8

Stochastic instrumentation
Pros

no performance penalty

no interference with normal execution

accuracy naturally increases on hotspots

Cons

none

9

Analysis applications
Linux

perf record / perf report

KDAB hotspot

MacOS: Apple XCode Instruments

Windows: Visual Studio (“dynamic instrumentation” / “collection via sampling”)

Intel-specific: vTune

AMD-specific: uProf

10

Bottom-up analysis

11

Flame graphs

12

