LECTURE 21

ASSOCIATIVE ARRAYS

Associative arrays

- also known as maps or dictionaries
- are collections of (key, value) tuples, where
- key could be any string of bits (integer, character string, other data)
- value is any data
- that support
- insertion (add a (key, value) tuple)
- deletion (remove a (key, value) tuple)
- lookup given a key,
- find the corresponding value,
- or determine that no such key has been added

Naive implementation

Just some list of (key, value) tuples:

	Insertion	Deletion (after lookup)	Lookup
Linked list	$O(1)$	$O(1)$	$O(n)$
Dynamic array	$O(1)$	$O(n)$	$O(n)$

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING A TOTAL ORDER ON KEYS

Total order on keys

- We assume that we can compare keys (i.e. evaluate key_i \leq key_j for any i, j)
- Always possible in practice (reinterpret key bits as a big integer)
- Sometimes, a specialized \leq operator makes sense (e.g. constant-size keys)
- key space may be infinite (arbitrary-sized keys)

Sorted dynamic array of (key, value) tuples

- Assume key0 \leq key1 \leq.. \leq keyn.
- Use bisection for key lookup

	Insertion	Deletion (after lookup)	Lookup
Linked list	$O(1)$	$O(1)$	$O(n)$
Dynamic array	$O(1)$	$O(n)$	$O(n)$
Sorted dynamic array	$O(n)$	$O(n)$	$O(\log (n))$

Binary search tree

- Invariant: For any given node i,
- key_j
- key_j > key_i for every descendant node jin the right subtree of i
- Main concern: depending on insertion order, we may get

or
bad

Self-balancing binary search tree

- AVL trees
- Red-black trees
- B-trees, splay trees, treaps, ...

	Insertion	Deletion (after lookup)	Lookup
Linked list	$O(1)$	$O(1)$	$O(n)$
Dynamic array	$O(1)$	$O(n)$	$O(n)$
Sorted dynamic array	$O(n)$	$O(n)$	$O(\log (n))$
Binary search tree	$O(n)$	$O(n)$	$O((n))$
AVL tree	$O(\log (n))$	$O(\log (n))$	$O(\log (n))$
Red-black tree	$O(\log (n))$	$O(\log (n))$	$O(\log (n))$

Self-balancing binary search tree

- Cache behavior: ok, not great
(similiar to other binary tree structures, e.g. heap)

8

| | 4 |
| :--- | :--- | :--- |

$9 \begin{array}{lll} & 10 & \\ 9 & & 12\end{array}$

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING KEYS BITS

TRIES

Trie

- A trie (or prefix tree) is a tree of static arrays of size 2^{T}
- Key bits are divided into chunks of T bits: "letters"
- Each T-bits letter gives an index for one node's static arrays
- Letters form a path in the tree (from root to leaf)
$\mathrm{T}=4$
Insert (0x9f2, V1) -> letters 2, f, 9
$\mathrm{T}=4$
Insert $(0 x 9 f 2, \mathrm{~V} 1) \quad->$ letters $2, \mathrm{f}, 9$

0123456789 abcdef
$\mathrm{T}=4$
Insert (0x9f2, V1) $\quad->$ letters 2, f, 9

0123456789 abcdef
0123456789 abcdef

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
```


0123456789 abcdef

$0123456789 \mathrm{abcde} f$

0123456789 abcdef
$\mathrm{T}=4$
Insert (0x9f2, V1) $\quad->$ letters 2, f, 9

0123456789 abcdef

0123456789 a b c def
$\mathrm{T}=4$
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) $->$ letters d, 8, c

0123456789 abcdef
 /

0123456789 a b c def

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
```



```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
```



```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
```



```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5
```



```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5
```



```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5
```


Key space

- Let us denote
- K : the set of all values a key can take
- n : number of tuples in the associative array
- We say that the key space is "sparse" if $n \ll K$
- We call it "dense" otherwise

"Dense" key space

- Insertion/deletion/lookup are $\simeq O(3)=O\left(\log _{16} 4096\right)=O\left(\log _{2^{T}} n\right)$
- but...
- ... then why not use just a static array? (or equivalently choose $T=12$)

"Sparse" key space

- Tries only make sense when the key space is sparse a static array of the size of the whole key space would be too big
- Complexity not dependent on number of entries
- Depends on key size and T
- Memory overhead can be large
worst case: every leaf node has a single tuple, $O\left(n \times 2^{T}\right)$

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING KEYS BITS

HASH TABLES

- Again, we denote
- K : the set of all values a key can take
- n : number of tuples in the associative array
- If we had a "dense" key space (n not much smaller than \mathbb{K})
- then we would simply use a static array, indexed by keys
- Could we map K into something dense?
- ... and then use a static array

Hash function

- A hash function h is a mapping $h: K \rightarrow U$ where $U \subseteq \mathbb{N}$ and $|U| \ll|K|$ (indeed K may not be a finite set, e.g. for arbitrary-sized keys)
- Since $|U|<|K|$, hash functions are necessarily surjective $\exists k_{1} \neq k_{2}$ such that $h\left(k_{1}\right)=h\left(k_{2}\right)$
- Examples of (usually bad) hash functions:
- take just the lower 8 bits of the key
- $h: \mathbb{Z} \rightarrow\{0, \ldots, m-1\}, \quad h(k)=k \bmod m$

Hash table

- A hash table is a static array of size $|U|$
- with an associated hash function $h: K \rightarrow U$.
- (k, v) tuples are stored in the static array at index $h(k)$
- Since h is surjective, we may have collisions
(tuples with distinct keys stored at a same array index)

How to deal with collisions (1)

- Make the hash table
- a static array of linked lists, or
- a static array of dynamic arrays
- In case of collision, resort to $O(c)$ linear search (where c is the maximum number of collisions)
- in the worst case, $c=n$
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) $->h(0 \times 532)=0 \times 2$

0123456789 abcdef
$\stackrel{\mid}{\text { V1 }}$ V3
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2

$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$ Lookup 0x4d2 -> h(0x4d2) = 0x2

0123456789 abcdef
$\stackrel{\mid}{\mid}$
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) $\quad->h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2 -> not found

0123456789 abcdef

How to deal with collisions (2): Open addressing

- Insertion of (key, value):
- Step 0: Compute index $\mathrm{i}=\mathrm{h}$ (key)
- Step 1: If array[i] is empty,
- place (key, value) there, done.
- Step 2: Otherwise,
- let $i=(i+1) \bmod |U|$,
- go back to Step 1.
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) $->h(0 \times 532)=0 \times 2$

0123456789 abcdef
| |
V1V3
V2
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2

$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2

$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2

$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) -> $h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> h(0x4d2) = 0x2

$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) $\quad->h(0 \times 532)=0 \times 2$
Lookup 0x4d2 -> $h(0 x 4 d 2)=0 x 2$-> not found

- Lookup for key:
- Step 0: Compute index i = h(key)
- Step 1: If array[i] matches key,
- return array[i].
- Step 2: If array[i] is empty,
- return not found.
- Step 2: Otherwise,
- let $i=(i+1) \bmod |U|$,
- go back to Step 1.

Probing

- Insertion of (k, v) :
- Step 0:
- Compute index $h_{0}=h(k)$
- Let $j=0$
- Step 1: If $\operatorname{array}\left[i\left(h_{0}, j\right)\right]$ is empty,
- place (k, v) there, done.
- Step 2: Otherwise,
- let $j=j+1$,
- go back to Step 1.
- where $i\left(h_{0}, j\right)$ can be:
- $i\left(h_{0}, j\right)=\left(h_{0}+j\right) \bmod |U|$ as before
- $i\left(h_{0}, j\right)=\left(h_{0}+K j\right) \bmod |U|$ for some constant K ("linear probing")
- $i\left(h_{0}, j\right)=\left(h_{0}+K j+L j^{2}\right) \bmod |U|$ for some K, L ("quadratic probing")
$h(k)=k \bmod 16$
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) $->h(0 x c 8 d)=0 x d$
Insert (0x532, V3) $->h(0 \times 532)=0 \times 2$

Good hash functions

- in practice, naive hash functions yield horrible collision rates (even for random keys!)
- good hash functions perform great on real (non-random) keys
- they take a non-uniform distribution of keys over K
- map it into a distribution over U that "looks" uniformly random
- Fowler-Noll-Vo (FNV), djb2, SipHash (lookup "non-cryptographic hash functions")
- Such generic hash functions h_{0} typically return 32-, 64- or 128-bit numbers.
- we use index $h(k)=h_{0}(k) \bmod |U|$

Complexity of hash table operations

- performance depends on
- density ($n /|U|)$
- key distribution
- hash function
- probing method
- when density approaches 1 ,
- increase $|U|$ (e.g. double it)
- rebuild hash table ("rehashing")

In practice

- as long as collision rate is kept low
- insert/delete/lookup are essentially $O(1)$
- first hash table access is typically a cache miss (at least L1)
- but with open addressing, in case of collisions, probing may not be

ASSOCIATIVE ARRAYS:

PERFORMANCE

- Between self-balancing trees, tries and hash tables, no clearly superior data structure.
- Data- and application-dependent.
- Try, benchmark
- Hash tables often perform better... when suitable:
- when hashing is cheap
- when we can ensure few collisions
- when the order of magnitude of n known in advance
- Self-balancing trees are often more robust:
- much better worst case non-amortized complexity (rehashing!)
- Tries can be faster when keys have a special structure
- page table (virtual address translation)
- network routing (IP addresses)
- GPT-type tokenizers

Combinations are possible and commonly used

- Hash table as a static array of self-balancing trees
- Depth-K trie with self-balancing trees at leaf nodes
- ...

SPATIAL DATA STRUCTURES

Spatial data structures

- Spatial data structures store collections of vectors in \mathbb{R}^{m}
- they allow operations such as
- insertion (add a vector $x \in \mathbb{R}^{m}$)
- deletion (remove one vector)
- find the vector closest to a given $y \in \mathbb{R}^{m}$
- for every inserted vector, find its nearest neighbor
- for every inserted vector, find its k nearest neighbors
- for every inserted vector, find all other vectors within a distance d

The problem

"for every inserted vector, find all other vectors within a distance d "

Naively, this problem has $O\left(n^{2}\right)$ complexity:

$$
\begin{aligned}
& R:=\emptyset \\
& \text { For } i=0, \ldots, n-1: \\
& \text { For } j=i+1, \ldots, n-1: \\
& \quad \text { If }\left\|x^{i}-x^{j}\right\| \leq d: \\
& \quad R:=R \cup\{(i, j)\}
\end{aligned}
$$

Grids

Grids

Grids

- Pros:
- quadratic only within grid cells
- Cons:
- need finite bounds $L \leq x_{i} \leq U$ for all x, for all i
- fixed cell size
- some may have too many x s
- many may be empty

Quadtrees and octrees

Quadtrees and octrees

Quadtrees and octrees

k-d trees

k-d trees

k-d trees

Quadtrees, octrees, k-d trees

- Pros:
- no need for finite bounds $L \leq x_{i} \leq U$ for all x, for all i
- variable cell size
- Limitations:
- fixed cell shape (cubes / boxes)
- poor fit for high-dimensional data:
- as m grows
- data size grows linearly
- number of cells grows exponentially
- even if all points are on a 2-dimensional hyperplane

Binary space partitioning

Binary space partitioning

Binary space partitioning

Binary space partitioning

- Pros:
- variable cell shape
- Cons:
- separating hyperplane computation is costly
- Limitations:
- not a good fit for high-dimensional data if, e.g. on a 2-dimensional curved manifold

Locality-sensitive hashing

- Design a function $h: \mathbb{R}^{m} \rightarrow \mathbb{R}$
- such that $\|y-x\|$ small $\Rightarrow|h(y)-h(x)|$ small, with high probability
- Impossible in all generality
- Depends on data

