
On the depth of cutting planes

Laurent Poirrier, James Yu∗

{lpoirrier,jj6yu}@uwaterloo.ca

March 15, 2019

Abstract

We introduce a natural notion of depth that applies to individual cutting planes as well as entire families.

This depth has nice properties that make it easy to work with theoretically, and we argue that it is a good

proxy for the practical strength of cutting planes. In particular, we show that its value lies in a well-defined

interval, and we give parametric upper bounds on the depth of two prominent types of cutting planes: split

cuts and intersection cuts from a simplex tableau. Interestingly, these parametric bounds can help explain

behaviors that have been observed computationally. For polyhedra, the depth of an individual cutting plane

can be computed in polynomial time through an LP formulation, and we show that it can be computed in

closed form in the case of corner polyhedra.

1 Introduction

Cutting planes (also called valid inequalities or cuts) have proven computationally useful since the very early

history of Integer Programming (IP). In the pioneering work of Dantzig, Fulkerson and Johnson [10] on the

traveling salesman problem, cutting planes were the main computational tool alongside the simplex method.

They were initially less successful for general IP problems, where they were largely outperformed by Land and

Doig’s branch-and-bound method [23]. However, in the mid-nineties, Balas, Ceria and Cornuéjols [2] proposed

combining the two: first adding a few rounds of cuts, before resorting to branch-and-bound. Since then, cutting

planes have become a central component of IP solvers [3], the most effective single families of cuts being Gomory’s

Mixed-Integer (GMI) cuts [19], and Nemhauser and Wolsey’s Mixed-Integer Rounding (MIR) cuts [24, 25].

In theory, both GMI and MIR cuts are equivalent [9] to the split cuts of Cook, Kannan and Schrijver [8]. Let

P be a polyhedron in Rn and let S be the set of its integer points, i.e. S := P ∩Zn. Consider the integer vector

π ∈ Zn and the integer π0 ∈ Z. Clearly, any point x ∈ S satisfies either πTx ≤ π0 or πTx ≥ π0 + 1. A split cut

for P is any inequality that is valid for P (π,π0) := conv({x ∈ P : πTx ≤ π0} ∪ {x ∈ P : πTx ≥ π0 + 1}). The

∗Both authors are supported by NSERC Discovery grant RGPIN-2018-04335.

1

split-cut view perfectly illustrates one major issue with cutting planes for general IPs: cut selection. Split cuts

are parametrized on (π, π0), yielding a huge family of cutting planes. One must choose, among those, a subset

that is computationally useful: cuts that yield a reduction in the number of branch-and-bound nodes, without

making the formulation too much larger and slowing down the simplex method. This motivates the need for

some (possibly heuristic) measure of cut strength.

A recent survey by Dey and Molinaro [11] provides an excellent summary of the current state of the cut selection

problem. The survey emphasizes how crucial cut selection is in the implementation of integer programming

solvers, but highlights one issue: While the strength of families of cuts is well covered in the literature, and

many ad-hoc cut evaluation methods exist in practice, there is a dearth of applicable theory. In particular,

theoretical approaches do not usually allow us to evaluate the strength of individual cuts. As the authors note,

“when it comes to cutting-plane use and selection our scientific understanding is far from complete.” We only

present here a brief introduction to the topic.

The most straightforward notion of strength is based on closures and rank. We illustrate these concepts with

splits, although they apply more generally. The first split closure P 1 is the intersection of all split cuts for the

formulation P , i.e. P 1 :=
⋂

(π,π0)∈Zn×Z P
(π,π0). The process can be iterated, and the kth split closure P k is the

first split closure of P k−1. A valid inequality for S has rank k if it is valid for P k but not for P k−1. Similarly,

the set conv(S) itself is said to have rank k if conv(S) = P k but conv(S) (P k−1. From a computational

perspective, it is easy to realize how cuts with higher split rank can be seen as stronger. However, this measure

is very coarse: One cannot discriminate between, say, cuts of rank one. Furthermore, while the rank is a

very powerful theoretical tool, it is impractical: For arbitrary cuts, the split rank is hard to compute exactly1,

and for split cuts computed by traditional means (successive rounds of cuts), a high rank is paradoxically

counter-productive, because numerical errors accumulate with each round.

The other natural candidate for measuring the strength of a valid inequality αTx ≥ β is the volume that it cuts

off, i.e. volume({x ∈ P : αTx < β}). This volume is easy to compute in some important cases (e.g., when P is a

cone), but it is more complex to work with in theory. Moreover, comparing volumes presents difficulties. In Rn,

volumes can be zero or infinite for entirely legitimate cuts. Zero cases can be mitigated by projecting down to

the affine hull of P , and infinities by projecting out variables. However, we then obtain incomparable volumes

computed in different dimensions. This is not just a theoretical issue. Practical cuts are typically sparse, and

if P is a cone, any zero coefficient in the cut will add one unbounded ray to the volume cut off.

On the computational side, a common approach is to evaluate the quantity

β − αTx∗

||α||2

at a point x∗ that we wish to separate, e.g. an LP optimal solution. This measure has been variously called (Eu-

clidean) distance [26], steepness [7], efficacy [13] and depth-of-cut [11]. Its limitations are well documented [11],

but it remains the primary quality measure in academic codes (we can only speculate about what commercial

solvers use). For more details, we refer the reader to Wesselmann and Suhl [26], who provide a nice survey

1Given a valid inequality αT x ≥ β, just determining whether it has rank one is NP-complete already [5]

2

of the alternatives (including the rotated distance of Cook, Fukasawa and Goycoolea [7]), and computational

evaluations.

In this work, we propose a measure of strength that we call the depth of a cut. Informally, it can be defined as

follows. First, the depth of a point in P is the distance between this point and the boundary of P . Then, the

depth of a cut is the largest depth of a point that it cuts off. In Section 2, we establish the basic properties of

cut depth. In particular, the depth is always positive when the cut is violated, and we show that it is always

finite when S is nonempty. Moreover, it is at most
√

n+1
2 when P is full-dimensional, and this bound is tight

up to a multiplicative constant. In Section 3, we apply this concept to give upper bounds on the depth of split

cuts. When P is full-dimensional, the upper bound is at most one, emphasizing a large gap between rank-1 split

cuts (at most 1) and the integer hull of P (at most
√

n+1
2). In general, the bound is proportional to the inverse

of ||π||. This provides a nice theoretical justification to recent empirical observations that split cuts based on

disjunctions with small coefficients are most effective [13, 16]. We then provide a simple bound for intersection

cuts from a simplex tableau, which also lines up with some recent computational results. In Section 4, we devise

an exact algorithm for computing the depth of an arbitrary cut, which consists in solving a linear programming

problem of the same size as the original problem. While this is great in theory, solving one LP per candidate

cut could be considered too expensive, still, to warant inclusion into general-purpose IP solvers. However, if

we consider corner polyhedra and compute cut depth with respect to their LP relaxation (a simple pointed

polyhedral cone), we obtain a much cheaper procedure. We conclude with a few open questions and conjectures

in Section 5.

2 Depth

We start with a formal definition for the depth of a point, which relies on a uniform notation for balls. Note

that we use || · ||k to denote the Lk norm, and that || · || indicates the L2 norm when k is omitted.

Definition 1. We define Bk(x, r) as the ball of radius r ∈ R+ in norm Lk centered in x ∈ Rn, i.e. Bk(x, r) :=

{y ∈ Rn : ||y − x||k ≤ r}. When k is omitted, B(x, r) implicitly uses the L2-norm.

Definition 2. Let P ∈ Rn and x ∈ P . We define the depth of x with respect to P as

depthP (x) := sup{r ∈ R+ : B(x, r) ∩ aff(P) ⊆ P}.

Observe that, in Definition 2, we intersect B(x, r) with the affine hull of P in order to properly handle the case

in which P is not full-dimensional. Otherwise, the depth would always be zero whenever dim(P) < n. We can

now introduce the depth of any subset S of P .

Definition 3. Let P, S ∈ Rn be such that S ⊆ P . We define the depth of S with respect to P as

depthP (S) := sup{depthP (x) : x ∈ P \ S}.

3

By extension, we define the depth of an inequality αTx ≥ β that is valid for P ∩ Zn as

depthP (α, β) := depthP ({x ∈ P : αTx ≥ β}).

This bears resemblance with the notion of distance introduced by Dey, Molinaro and Wang [12], d(S, P) :=

maxx∈P miny∈S ||x − y||2. The measures are distinct, but it is easy to show that depthP (S) ≤ d(S, P) for all

S ⊆ P ⊆ Rn. We now show that in the full-dimensional case, the depth of a cutting plane is a lower bound on

the volume that it cuts off.

Proposition 1. Let P ∈ Rn be a full-dimensional convex set, let αTx ≥ β be an inequality, and let Vcut(α, β)

be the volume of {x ∈ P : αTx < β}. Then,

Vcut(α, β) ≥ 1

2
Vn(depthP ({x ∈ P : αTx ≥ β}))

where Vn(r) is the volume of a ball of radius r in Rn. Note that, for example, Vn(r) = πn/2

(n/2)!r
n when n is even.

Proof. Let S := {x ∈ P : αTx ≥ β}, x′ ∈ P \ S, and r > 0 be such that B2(x′, r) ⊆ P . We build the half-ball

H := {x ∈ B2(x′, r) : αTx ≤ αTx′}. Since αTx′ < β, we have that H ⊆ {x ∈ B2(x′, r) : αTx < β} ⊆ {x ∈
P : αTx < β}. In other words, H is included in the set that is cut off from P by αTx ≥ β.

Clearly, an upper bound on such depth for any valid inequality is the depth of the integer hull of P , i.e.

depthP (conv(P ∩ Zn)). We now give a first upper bound on the latter.

Proposition 2. Let P ⊆ Rn be a full-dimensional convex set. The depth of the integer hull of P is at most
√
n.

Proof. Having depthP (conv(P ∩ Zn)) >
√
n would imply that there exist x ∈ P \ conv(P ∩ Zn) such that

B2(x, r) ⊆ P with r >
√
n. We then have B∞(x, 1) ⊆ B2(x, r) ⊆ P , which means that all 2k integer roundings

of x are in P , hence contradicting x /∈ conv(P ∩ Zn).

We mention the
√
n upper bound from Proposition 2 because it is intuitive and easy to obtain, but this result

can be strengthened, and we do so in Theorem 1. In order to prove it, we first establish the following lemma.

Lemma 1. Let n ≥ 2. For any point y ∈ Rn, there exists a lattice polytope X ⊆ Rn such that y ∈ X ⊂
B
(
y,
√

n+1
2

)
.

Proof. As we can translate the problem by arbitrary integers, we assume without loss of generality that 0 ≤ y ≤
1. Furthermore, by using reflections (i.e., replacing yj by (1−yj) for the appropriate indices j), we assume wlog

that y ∈ Y , with Y := {y ∈ Rn : 0 ≤ y ≤ 1
2}. Consider the set X := {x ∈ Rn : 0 ≤ x ≤ 1 and 1Tx ≤

⌈
1T y

⌉
}.

4

Clearly, y ∈ X. Moreover, the matrix defining X is totally unimodular, so all its vertices are integral, and X

can be equivalently rewritten X = conv{x ∈ {0, 1}n : 1Tx ≤
⌈
1T y

⌉
}. We now establish an upper bound on the

Euclidean distance between y and any point of X. To that end, we look for a pair ȳ ∈ Y , x̄ ∈ X that maximizes

that distance ||ȳ − x̄||. Observe that because X and Y are polyhedra, there exists at least one maximizer in

which x̄ is a vertex of X and ȳ is a vertex of Y . We can thus write that ||ȳ − x̄||2 is given by

max
∑
j(yj − xj)2

s. t. yj ∈ {0, 12} for all j

xj ∈ {0, 1} for all j

1Tx ≤
⌈
1T y

⌉
.

(1)

Observe that the terms (yj − xj)2, in the objective function, can only take one of the discrete values {0, 14 , 1}.
We say that term j is a v-term if (yj − xj)2 = v. For 1-terms, we have yj = 0 and xj = 1. For 0-terms, we

have yj = xj = 0. For every 1
4 -term, we have yj = 1

2 and we know that xj = 0 in some optimal solution, since

using that value does not affect the 1Tx ≤
⌈
1T y

⌉
constraint. Given that restriction, a pair (x, y) is feasible if

and only if it satisfies the following condition: if we have k ≥ 1 1-terms, then we need at least (2k− 1) 1
4 -terms

in order to satisfy
∑
j xj ≤

⌈∑
j yj

⌉
. We can thus construct an optimal solution by greedily maximizing the

number of 1-terms, then the number of 1
4 -terms. We have n terms in total, so

k + (2k − 1) ≤ n

k ≤ n+ 1

3

k =

⌊
n+ 1

3

⌋
.

We obtain {
ȳj = 0 and x̄j = 1, for j ∈ J1, where |J1| =

⌊
n+1
3

⌋
ȳj = 1

2 and x̄j = 0, for j ∈ J 1
4 , where |J 1

4 | = n−
⌊
n+1
3

⌋
.

(2)

It follows that

||ȳ − x̄||2 =

⌊
n+ 1

3

⌋
+

1

4

(
n−

⌊
n+ 1

3

⌋)
=

⌊
n+ 1

3

⌋
+
n

4
− 1

4

⌊
n+ 1

3

⌋
.

Let ρ ∈ {0, 1, 2} be such that ρ = (n+ 1) (mod 3). We get

||ȳ − x̄||2 =
n+ 1− ρ

3
+
n

4
− 1

4
· n+ 1− ρ

3

=
1

12
(4n+ 4− 4ρ+ 3n− n+ 1− ρ)

=
n

2
+

5− 5ρ

12
,

so the maximum distance is

||ȳ − x̄|| =
√
n

2
+

5− 5ρ

12
<

√
n+ 1

2
.

Therefore, for any y ∈ Rn, we can construct a set X such that X is a lattice polytope, y ∈ X, and X ⊂
B
(
y,
√

n+1
2

)
.

5

Theorem 1. Let n ≥ 2 and let P ⊆ Rn be a full-dimensional convex set. The depth of the integer hull of P is

less than
√

n+1
2 .

Proof. Suppose, by contradiction, that depthP (conv(P ∩Zn)) ≥
√

n+1
2 . Then, there exists y ∈ P \conv(P ∩Zn)

such that depthP (y) ≥
√

n+1
2 , i.e., B

(
y,
√

n+1
2

)
⊆ P . By Lemma 1, we can construct a polytope X with

integral vertices that satisfies y ∈ X ⊂ B
(
y,
√

n+1
2

)
⊆ P . This implies that y is a convex combination of

integral points in P , contradicting y /∈ conv(P ∩ Zn).

Corollary 1. Let n ≥ 2 and let P ⊆ Rn be a rational polyhedron whose integer hull is nonempty. We assume

wlog that 0 ∈ P and consider a basis L ∈ Zn×d of the lattice Zn ∩ aff(P). The depth of the integer hull of P is

less than
√
λd

√
d+1
2 , where λd is the largest eigenvalue of LTL.

Proof. Since P is rational, aff(P) = {Ly : y ∈ Rd}, so every point ỹ ∈ P can be expressed as ỹ = Ly for some

y ∈ Rd. By Lemma 1, for every y ∈ Rd, there exists a lattice polytope X ∈ Rd such that y ∈ X ⊂ B
(
y,
√

d+1
2

)
.

Observe that ỹ ∈ LX and that LX ⊂ Rn is also a lattice polytope. Letting x̃ be a vertex of LX, we know that

x̃ = Lx for some x ∈ X. We can now bound the distance between x̃ and ỹ.

||ỹ − x̃||2 = (ỹ − x̃)T (ỹ − x̃)

= (Ly − Lx)T (Ly − Lx)

= (L(y − x))T (L(y − x))

= (y − x)TLTL(y − x)

≤ λd||y − x||2 ≤ λd

√
d+ 1

2
.

We can now apply to ỹ the same reasoning as in the proof of Theorem 1.

Whereas Theorem 1 only provides an upper bound on the depth of integer hulls, we now construct a lower

bound. Theorem 2 shows that one can construct formulations whose integer hull has high depth.

Theorem 2. For n ≥ 2, there exists a full-dimensional convex set P ⊆ Rn whose integer hull has depth

depthP (conv(P ∩ Zn)) =
√
3+n
2 .

Proof. We define T := {0, 1}n−1 and let T = {t1, . . . , t2n−1}. We then define D := {d1, . . . , d2n−1} ⊆ Rn where

dj = (1, tj − 1
21). Observe that |d1| = · · · = |d2n−1 |. We build the translated polyhedral cone P

P := {x ∈ Rn : dj
T
x ≤ 1 +

1

2
|tj |1 − ε, for j = 1, . . . , 2n−1}

where |tj |1 is the L1 norm of tj , or in this case the number of ones in the binary vector tj . The parameter

ε > 0 can be arbitrarily small. Finally, we give a point c :=
(
1, 12 , . . . ,

1
2

)
∈ Rn. As illustrated in Figure 1, P is

constructed such that the jth inequality is orthogonal to dj and almost touches but cuts off (1, tj) = c+ dj . All

6

Figure 1: The cone P in the proof of Theorem 2.

integer points in x ∈ P ∩Zn satisfy x1 ≤ 0, so the point x′ = c+εe1 does not belong to conv(P ∩Zn). Therefore,

the ball B2(x′, |d1|− ε′) is included in P for some ε′ > 0. Note that ε′ can be chosen arbitrarily small as ε tends

towards zero. At the limit, the depth of the integer hull of P is |d1| =
√

12 + (n− 1)
(
1
2

)2
=
√

3
4 + n

4 =
√
3+n
2 .

3 Bounds on the depth of cutting planes

3.1 Split cuts

It has long been understood that split cuts computed from a disjunction (π, π0) tend to be more effective

computationally when the coefficients of π are small. For example, this can be seen in the row aggregation

heuristics of Fischetti and Salvagnin [13]. Recently, Fukasawa, Poirrier and Yang [16] performed computational

tests and explicitly verified this hypothesis. The intuition behind this behavior is that the distance between the

two half-spaces πTx ≤ π and πTx ≥ π + 1 decreases when π grows. Our notion of depth lets us formalize this

intuition.

Theorem 3. Let V be the affine hull of P and let projV y denote the projection of y ∈ Rn onto V . Suppose

x ∈ P \ P (π,π0). If projV π = 0, then P (π,π0) = ∅ and P ∩ Zn = ∅. Otherwise, there exists a point x′ ∈ V \ P
such that ‖x− x′‖ ≤ 1

‖projV π‖ .

Proof. Observe that since x /∈ P (π,π0), we know that π0 =
⌊
πTx

⌋
. We construct a vector d ∈ V given by

7

d = 1
‖projV π‖2 projV π. Then, we cannot have that both x+ d and x− d are in P . Indeed,

πT (x+ d) = πTx+ πT d

= πTx+
πT projV π

‖projV π‖
2

= πTx+
(projV π + projV ⊥ π)

T
projV π

‖projV π‖
2

= πTx+
(projV π)

T
projV π

‖projV π‖
2

= πTx+ 1

≥
⌊
πTx

⌋
+ 1 = π0 + 1

and similarly πT (x− d) ≤ π0. Thus if both x+ d and x− d were in P , we would also have that x− d, x+ d ∈
P (π,π0), contradicting either x /∈ P (π,π0) or the convexity of P (π,π0). Finally, we let x′ in the statement be one

of x− d or x+ d in order to satisfy x′ /∈ P , and verify that ||x− x′|| = ||d|| = 1
‖projV π‖ .

If we do not require x′ to lie in the affine hull of P , then Theorem 3 simplifies into Corollary 2.

Corollary 2. Let P ⊆ Rn. If x ∈ P \ P (π,π0), then there exists a point x′ /∈ P such that ‖x− x′‖ ≤ 1
‖π‖ .

The bounds in Theorem 3 and Corollary 2 can be interpreted as follows. For any disjunction (π, π0), all the

points separated by split cuts from (π, π0) are within a distance of 1
‖π‖ from the boundary, and a distance of

1
‖projV π‖ from the boundary within the affine hull of P .

Corollary 3. Given P ⊆ Rn,

depthP

(
P (π,π0)

)
≤ 1

‖projV π‖
.

Furthermore, if P is full-dimensional, then depthP
(
P (π,π0)

)
≤ 1
‖π‖ . Given x ∈ P \P (π,π0), we have depthP (x) ≤

max{πT x−bπT xc,dπT xe−πT x}
‖projV π‖ in the general case, and depthP (x) ≤ max{πT x−bπT xc,dπT xe−πT x}

‖π‖ if P is full-

dimensional.

This confirms that cuts with small ||π|| are potentially deeper. Moreover, Corollary 3 suggests that disjunction

directions π that are close to orthogonal to the affine hull of P may be more beneficial. We now show that the

above bounds are tight.

Proposition 3. The bounds in Theorem 3 and Corollary 2 are tight.

Proof. Given any 0 < ε < 1, consider the set P = {x ∈ Rn : x1 ≥ ε
3}, the disjunction (e1, 0) ∈ Zn+1, and the

point x =
(
1− ε

3 , 0
)
∈ P . It is easy to verify that x /∈ P (e1,0). The affine hull of P is Rn so Theorem 3 and

Corollary 2 describe the same bound 1
‖e1‖ = 1. However, the distance from x to the boundary of P is

1− 2ε

3
> 1− ε =

1

‖e1‖
− ε.

8

Letting ε→ 0+ yields the claim.

Note that our results automatically apply to Chvátal-Gomory cuts [18, 20, 6] as well, since Chvátal-Gomory

cuts are exactly the split cuts for which one side of the disjunction is infeasible [4].

3.2 Intersection cuts

Another upper bound we can derive concerns the depth of intersection cuts [1] for continuous relaxations

of corner polyhedra (this is the most common setup for the practical generation of so-called multirow cuts).

Consider a feasible continuous corner

PI =
{

(x, s) ∈ Zm × Rn+ : x = f +Rs
}
,

where f ∈ Qm \ Zm and R ∈ Qm×n. The inequalities sj ≥ 0, and any conic combination of these inequalities,

are trivially valid for conv(PI). Because (Rj , ej) is an extreme ray of conv(PI) for every j, any nontrivial valid

inequality for conv(PI) takes the form αT s ≥ 1 where α ≥ 0. Given any such nontrivial valid inequality, we can

immediately compute an upper bound on its depth, by inspection.

Theorem 4. Let αT s ≥ 1 be a valid inequality for conv(PI). Its depth satisfies

depthP (α, 1) ≤ min
j

 1

αj

√√√√(∑
i

R2
ij

)
+ 1 : αj > 0

 .

Proof. Let (x, s) be any point that belongs to the LP relaxation of PI , i.e. s ≥ 0, but that is cut off by αT s ≥ 1.

For any index j such that αj > 0, we have αjsj ≤ αT s < 1, so sj <
1
αj

. We construct a point (x̄, s̄) by setting

s̄ = s− 1
αj
ej and x̄ = f +Rs̄. Since s̄j < 0, (x̄, s̄) is LP infeasible. The depth of the cut is thus upper bounded

by the Euclidean distance d between (x, s) and (x̄, s̄). We have

d2 =

∥∥∥∥∥
[
x̄

s̄

]
−

[
x

s

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R(s̄− s)
s̄− s

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R 1
αj
ej

1
αj
ej

]∥∥∥∥∥
2

=
1

α2
j

∥∥∥∥∥
[
Rej

ej

]∥∥∥∥∥
2

.

9

Therefore,

depthP (α, 1) ≤ 1

αj

√√√√(∑
i

R2
ij

)
+ 1.

There are two interesting links between Theorem 4 and the computational literature. First, note that the

multipliers
√(∑

iR
2
ij

)
+ 1 coincide with the edge lengths in the steepest edge pricing [17] for the primal simplex

method2. This is not surprising, since the edge length is the linear coefficient in the relationship between the

increase of the value of one nonbasic variable and the Euclidean distance traveled. Still, it is noteworthy that

those same edge lengths appear in cut depth computations as well. Second, setting aside the multipliers, we

can observe that the tightest upper bound in the proof of Theorem 4 is given by the largest value of αj . It thus

seems natural that we should minimize the largest αj coefficient in order to obtain a deep cut. This is exactly

the infinity cut approach of Fukasawa, Poirrier and Xavier [15], who showed computationally that selecting a

few cuts that minimize the largest αj can yield about half the performance of selecting all the cuts together.

Theorem 4 suggests that one could possibly improve on [15] by weighing the infinity norm measure using the

primal steepest edge lengths.

4 Computing the depth of a cutting plane

4.1 General polyhedra

Consider a nonempty polyhedron P described by

P = {x ∈ L : Ax ≤ b},

where A ∈ Rm×n, L ⊆ Rn is an affine space, and dim(P) = dim(L), implying that L is the affine hull of P . We

denote by ai the ith row of A. We first characterize the depth of a point.

Proposition 4. A point x̃ ∈ P has depthP (x̃) ≥ δ if and only if, for every i, the distance between x̃ and the

affine space {x ∈ L : ai
T
x = bi} is at least δ.

Proof. (⇐): If the aforementioned distance is at least δ, then (B(x̃, δ)∩L) ⊆ {x ∈ L : ai
T
x ≤ bi}. If this is true

for all i, we have (B(x̃, δ) ∩ L) ⊆ P , hence depthP (x̃) ≥ δ. (⇒): Conversely, if the distance is lower than δ for

some i, then there exists a point z ∈ (B(x̃, δ)∩L) such that ai
T
x > bi. Therefore, z /∈ P , so depthP (x̃) < δ.

Let us denote by ti ∈ Rn the vector that satisfies (i) ||ti|| = 1, (ii) ti ∈ L, and (iii) {x ∈ L : ai
T
x ≤ bi} =

{x ∈ L : ti
T
x ≤ hi} for some hi. Observe that ti is orthogonal to {x ∈ L : ai

T
x = bi}, and can be obtained

2Steepest edge is by far the best practical pricing method to minimize the number of simplex iterations. For the dual simplex
method, steepest edge pricing is also the fastest approach overall [14]. In the primal case, it is balanced by higher per-iteration
cost, and is often outperformed by faster, approximate versions of steepest edge.

10

by projecting ai on L, then normalizing. Letting T ∈ Rm×n be the matrix whose ith row is ti for all i, we can

rewrite P as P = {x ∈ L : Tx ≤ h}.

Given ti and hi, the distance between x̃ ∈ P and {x ∈ L : ai
T
x = bi} can be expressed as

max{λ ≥ 0 : ti
T

(x̃+ λti) ≤ hi} = max{λ ≥ 0 : ti
T
x̃+ λ ≤ hi} (3)

= hi − ti
T
x̃. (4)

By Proposition 4, depthP (x̃) is the minimum such distance, yielding

depthP (x̃) = max{λ ≥ 0 : T x̃− 1.λ ≤ h} (5)

= min
i
{hi − ti

T
x̃}. (6)

It follows from (5) that for λ ≥ 0, the set P (λ) := {x ∈ L : Tx+ 1.λ ≤ h} is the set of all points of P that have

depth at most λ.

We now tackle the depth of a cut. Given a cutting plane αTx ≥ β, the closure of the set of points that are cut

off from P by that cutting plane is given by the polyhedron {x ∈ P : αTx ≤ β}. The depth of that cutting

plane is the largest λ ≥ 0 such that the set

{x ∈ P (λ) : αTx ≤ β} (7)

is feasible. We thus find depthP (α, β) by solving the linear optimization problem

depthP (α, β) = max λ

s. t. Tx+ 1.λ ≤ h
αTx ≤ β
x ∈ L, λ ≥ 0.

(8)

4.2 Corner polyhedra

Consider a corner polyhedon [21, 22], for example {(x, s) ∈ Zm × Zn+ : x = f + Rs}, and let P be its LP

relaxation. The polyhedron P can be obtained by applying an affine transformation to an orthant (that is not

necessarily full-dimensional). Therefore, P is a simple pointed cone, i.e., it has a vertex v and can be expressed

as v plus a conic combination of its dim(P) extreme rays. Again, we let P = {x ∈ L : Ax ≤ b}, where L is the

affine hull of P . Furthermore, we assume wlog that A contains no redundant inequalities. Then, the vertex of P

is v := {x ∈ L : Ax = b}. Let L ∈ R(n−dim(L))×n be a full row rank matrix such that L = {x ∈ Rn : Lx = ξ}
for some ξ ∈ R(n−dim(L)). Using the matrix T defined above, the vertex of P can be expressed as

v =

[
T

L

]−1 [
h

ξ

]
.

11

Similarly, the vertex v(λ) of P (λ) is given by

v(λ) =

[
T

L

]−1([
h

ξ

]
− λ

[
1

0

])
= v + λq, where q := −

[
T

L

]−1 [
1.λ

0

]
. (9)

Since changing λ effectively amounts to changing the right-hand sides in the formulation of P (λ), it does not

affect its recession cone. In other words, letting C be the recession cone of P , we have P (λ) = {v(λ)}+ C, for

all λ ≥ 0. Note that since P (λ) ⊆ P , we know that q ∈ C.

If there exists a ray r ∈ C of P such that αT r < β, then the set (7) is feasible for all values of λ, and the

optimization problem (8) is unbounded (i.e., either P ∩ Zn is empty, or the cut is invalid). Otherwise, (7) is

feasible if and only if v(λ) is feasible, and (8) becomes max{λ ≥ 0 : αT v(λ) ≤ β}, i.e.

max{λ ≥ 0 : αT (v + λq) ≤ β}. (10)

We assume that αT v ≤ β (otherwise the cut is either nonviolated, or invalid) and that αT q > β (otherwise the

depth is unbounded again: either P ∩Zn is empty, or the cut is invalid). We can thus solve (10) in closed form,

finding λ such that αT v + λαT q = β, i.e.

depthP (α, β) =
β − αT v
αT q

. (11)

4.3 Computing depths in practice

For each cut, the cost of computing its depth is that of solving the linear optimization problem (8) (or, in the

case of corner polyhedra, computing q from the linear system (9)). In standard inequality form, the problem (8)

has the same dimension as the original formulation, plus one row and one column. Warm start can be exploited

if we are to compute the depth of multiple cuts, since only the constraint αTx ≤ β will change.

Note that in practice, mixed-integer programming solvers work in standard equality form with general upper

and lower bounds, in part because it is what implementations of the simplex method expect. A formulation

would thus be {x ∈ P : xj ∈ Z, for j ∈ J}, where

P = {x ∈ Rn : Lx = ξ, ` ≤ x ≤ u}.

Let the constraint matrix L ∈ Rp×n be full row rank3. The affine hull of P is L = {x ∈ Rn : Lx = ξ} and the

2n inequalities are eTj x ≥ `j and eTj x ≤ uj for j = 1, . . . , n. As we will see below, this makes problem (8) in

standard equality form substantially larger than the original formulation.

We now account for the fixed cost of constructing the matrix T . Recall that every row ti of T is the normalized

projection of ai on L, where ai is a normal vector to the ith inequality constraint (pointing towards infeasibility).

3This assumption generally holds true in practice, because presolve attempts to remove redundant rows. Furthermore, some
LP solvers assume that the constraint matrix contains an identity, whose columns (possibly fixed to zero by ` and u) are used as
slacks, primal phase-I artificial variables, and replacement columns for basis repair.

12

In standard equality form, this means computing the projection of ej (and −ej) onto the vector subspace

{x ∈ Rn : Lx = 0}. We adopt the approach of adding to ej a linear combination of the rows of L, such that

the result is the desired projection. Letting that projection be ej + LTµj , we need to find µj ∈ Rp such that

L(ej + LTµj) = 0. We thus solve the linear system

LLTµj = −Lj ,

where Lj is the jth column of L. It should be noted that LLT is a p× p positive definite matrix, since the rows

of L are linearly independent, allowing a Cholesky factorization. The element (LLT)ik will be zero whenever

the ith and kth rows of the constraint matrix L are orthogonal (this will happen at least when the supports

of the rows are disjoint). Thus, when L is sparse, LLT should be somewhat sparse as well. From a practical

perspective, solving n such systems is a nontrivial computation, but it can be expected to take a fraction of the

time necessary to solve the root node LP relaxation4, and is well suited for parallelization. Once the µj vectors

are computed, we let γj := ej + LTµj , and the bound constraints can be reformulated as

`j + ξTµj ≤ γjTx ≤ uj + ξTµj .

After normalizing, we obtain

`j + ξTµj

||γj ||
≤ γj

T
x

||γj ||
≤ uj + ξTµj

||γj ||
,

so the constraints corresponding to Tx+ 1.λ ≤ h in (8) will be

`j + ξTµj

||γj ||
+ λ ≤ γj

T
x

||γj ||
≤ uj + ξTµj

||γj ||
− λ. (12)

Using constraints (12) in (8) would yield a standard equality form problem with 2n additional linear constraints,

and 2n additional slacks, compared to the formulation of P . Furthermore, these new constraints can be expected

to be denser than the original constraints. This can be partially mitigated by multiplying (12) by the norm of

the projected vector

`j + ξTµj + ||γj ||λ ≤ γjTx ≤ uj + ξTµj − ||γj ||λ

then subtracting µj
T
Lx = µj

T
ξ

`j + ||γj ||λ ≤ xj ≤ uj − ||γj ||λ,

yielding the optimization problem

min λ

s. t. xj − ||γj ||λ− yj = `j for all j = 1, . . . , n

xj + ||γj ||λ+ zj = uj for all j = 1, . . . , n

αTx+ s = β

Li
T
x = ξi for all i = 1, . . . , p

x ∈ Rn, y ∈ Rn+, z ∈ Rn+, λ ∈ R+, s ∈ R+

(13)

4The simplex method requires solving 2 to 4 unsymmetric linear systems of the same size, per iteration. It is often reasonable
to expect about n iterations in practice, although the variance is high and the worst case is, of course, exponential in n.

13

Like one that would use (12), the linear problem (13) has p + 2n constraints and 3n + 1 variables. In (13)

however, the added rows are very sparse, and the original constraints are left untouched, avoiding numerical

errors in the formulation.

5 Conclusion

We propose a new measure for the strength of cutting planes, which we call depth. It is strictly positive for

violated inequalities and bounded above by a function of the dimension and the integer lattice. We argue (i) that

it is a useful theoretical tool, one which can help us explain computational results observed previously, (ii) that

it should be a good proxy for the computational usefulness of individual cuts in a branch-and-cut framework,

and as such could be used to help tackle the problem of cut selection, and (iii) that it can be computed, or at

least approximated, at a reasonable computational cost. The concept of depth also raises a few questions that

we did not address here.

Regarding full-dimensional integer hull depth, there is a gap of a factor
√

2 between the upper bound in

Theorem 1 and the lower bound in Theorem 2. In particular, finding the tightest possible bound for Lemma 1

seems like a very simple and elegant problem, to which we do not currently have a solution. We conjecture

that Theorem 2 is tight up to an additive constant, and that Lemma 1/Theorem 1 can be strengthened. Our

intuition is motivated by the following: Let (x̄, ȳ) be pair of points constructed in (2) that achieves maximum

distance for the optimiziation problem (1). Then, let X ′ be the convex hull of all the vertices of X except x̄.

It turns out that ȳ ∈ X ′. It is thus possible that there exists a construction for X that features a smaller ball

radius, and still contains ȳ.

It would be interesting to have a priori upper bounds on families of cuts beyond split cuts. We provide a rough

bound for intersection cuts in Section 3.2, but it can be evaluated only after a cut is computed. A bound that

is parametrized on the lattice-free set would be more useful both theoretically (to compare different types of

lattice-free sets) and computationally (to select better lattice-free sets).

It is easy to show that the depth of a cutting plane with respect to a relaxation is an upper bound on its

depth with respect to the original formulation. We can thus already approximate the depth – at a much lower

computational cost – by considering corner relaxations and using (11). While the depth of a cut is not the

minimum of its depths with respect to all corners, it may still be possible to get tighter approximations by using

multiple bases. In the case of strict corners (which can have more facets than dimensions), P (λ) may not be a

cone for λ > 0. However, there could still be an easy way to compute cut depth.

Finally, computational experiments are required to evaluate the adequacy of depth as comparator for cut

selection. Such experiments would require particular care, since we would need to measure IP solver performance,

which is notoriously sensitive to small perturbations.

14

References

[1] Egon Balas. Intersection cuts – a new type of cutting planes for integer programming. Operations Research,

1(19):19–39, 1971.

[2] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-and-project in a

branch-and-cut framework. Management Science, 42(9):1229–1246, 1996.

[3] Robert E. Bixby. A brief history of linear and mixed-integer programming computation. Documenta

Mathematica, pages 107–121, 2012.

[4] Pierre Bonami, Gérard Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and Andrea Lodi. Projected Chvátal–

Gomory cuts for mixed integer linear programs. Mathematical Programming, 113(2):241–257, Jun 2008.

[5] Alberto Caprara and Adam N. Letchford. On the separation of split cuts and related inequalities. Mathe-

matical Programming, 94(2):279–294, Jan 2003.

[6] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics,

4(4):305 – 337, 1973.

[7] William J. Cook, Ricardo Fukasawa, and Marcos Goycoolea. Effectiveness of different cut selection rules:

Choosing the best cuts. Workshop on Mixed Integer Programming, Miami, Florida, 2006.

[8] William J. Cook, Ravindran Kannan, and Alexander Schrijver. Chvátal closures for mixed integer pro-

gramming problems. Mathematical Programming, 47(1-3):155–174, 1990.

[9] Gérard Cornuéjols and Yanjun Li. Elementary closures for integer programs. Operations Research Letters,

28:1–8, 2000.

[10] George Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson. Solution of a large-scale traveling-salesman

problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.

[11] Santanu S. Dey and Marco Molinaro. Theoretical challenges towards cutting-plane selection. Mathematical

Programming, 170(1):237–266, Jul 2018.

[12] Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with sparse inequalities.

Mathematical Programming, 154(1):329–352, Dec 2015.

[13] Matteo Fischetti and Domenico Salvagnin. Approximating the split closure. INFORMS Journal on Com-

puting, 25(4):808–819, 2013.

[14] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithms for linear programming. Mathe-

matical Programming, 57(1):341–374, May 1992.

[15] Ricardo Fukasawa, Laurent Poirrier, and Álinson Xavier. Multi-row intersection cuts based on the infinity

norm. Optimization online, 2019.

[16] Ricardo Fukasawa, Laurent Poirrier, and Shenghao Yang. Split cuts from sparse disjunctions. Optimization

online, 2018.

15

[17] Donald Goldfarb and John K. Reid. A practicable steepest-edge simplex algorithm. Mathematical Pro-

gramming, 12(1):361–371, Dec 1977.

[18] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American

Mathematical Society, 64(5):275–278, 1958.

[19] Ralph E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand

Corporation, 1960.

[20] Ralph E. Gomory. An algorithm for integer solutions to linear programs. In R.L. Graves and P. Wolfe,

editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-Hill, New York, 1963.

[21] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, part I.

Mathematical Programming, 3:23–85, 1972.

[22] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, part II.

Mathematical Programming, 3:359–389, 1972.

[23] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete programming problems.

Econometrica, 28(3):497–520, 1960.

[24] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John Wiley &

Sons, 1988.

[25] George L. Nemhauser and Laurence A. Wolsey. A recursive procedure to generate all cuts for 0–1 mixed

integer programs. Mathematical Programming, 46:379–390, 1990.

[26] F. Wesselmann and U. H. Suhl. Implementing cutting plane management and selection techniques. Tech-

nical report, University of Paderborn, December 2012.

16

	Introduction
	Depth
	Bounds on the depth of cutting planes
	Split cuts
	Intersection cuts

	Computing the depth of a cutting plane
	General polyhedra
	Corner polyhedra
	Computing depths in practice

	Conclusion

