
The (not so) Trivial Lifting in Two Dimensions

Ricardo Fukasawa∗ Laurent Poirrier† Álinson S. Xavier‡

Department of Combinatorics and Optimization
University of Waterloo, Canada

November 15, 2016

Abstract

When generating cutting-planes for mixed-integer programs from multiple rows of the sim-
plex tableau, the usual approach has been to relax the integrality of the non-basic variables,
compute an intersection cut, then strengthen the cut coefficients corresponding to integral
non-basic variables using the so-called trivial lifting procedure. Although of polynomial-
time complexity in theory, this lifting procedure can be computationally costly in practice.
For the case of two-row relaxations, we present a practical algorithm that computes trivial
lifting coefficients in constant time, for arbitrary maximal lattice-free sets. Computational
experiments confirm that the algorithm works well in practice.

Keywords lifting · cutting planes
Mathematical Subject Classification 90C11 · 90C57

1 Introduction

A recent topic of interest in the theory of general-purpose cutting planes for mixed-integer
linear programming (MIP) has been cutting planes that can only be obtained by considering
multiple rows of a simplex tableau simultaneously (see for instance [1, 5, 11]). More specifically,
researchers have been interested in producing strong valid inequalities for the corner relaxation
of a simplex tableau [13], defined as

x = f +
∑
r∈R

rsr +
∑
w∈W

wyw

x ∈ Zm

sr ∈ R+∀r ∈ R
yw ∈ Z+∀w ∈W,

(1)

∗rfukasawa@uwaterloo.ca
†lpoirrier@uwaterloo.ca
‡axavier@uwaterloo.ca

1

where f ∈ Rm \Zm, R ⊆ Rm and W ⊆ Rm. In this relaxation, the decision variables x, s and y
correspond, respectively, to integral basic variables, continuous non-basic variables and integral
non-basic variables, while f,R and W correspond to the right-hand side and to the columns of
the tableau.

One approach to obtain valid inequalities for (1) is via lifting, a technique first introduced by
Padberg [23] for a specific combinatorial problem and later generalized to other polyhedra (see
Dey and Wolsey [11]). In this approach, a strong valid inequality for the following simplified
model is first computed and then transformed into a strong valid inequality for (1):

x = f +
∑
r∈R

rsr

x ∈ Zm

sr ∈ R+∀r ∈ R.

(2)

Note that (2) is the model obtained from (1) by fixing all the integral non-basic variables
in (1) to zero. This model is considerably simpler than (1) and, following a seminal paper
by Andersen, Louveaux, Weismantel and Wolsey [1], has received much attention in the last
decade (see [8, Chapter 6] for a survey). It is well known that valid inequalities for (2) can be
obtained from convex lattice-free sets in Rm (see Balas [3]). More specifically, if B ⊆ Rm is a
convex lattice-free set containing f in its interior and ψ : Rm → R is the gauge function of the
convex set B − f , then the inequality ∑

r∈R
ψ(r)sr ≥ 1 (3)

is valid for (2). Furthermore, every non-trivial valid inequality for (2) can be written as (3),
where ψ is the gauge function of some convex lattice-free set (see Borozan and Cornuéjols [7]).
Obtaining strong valid inequalities for (2), therefore, can be done in practice by generating
convex lattice-free sets in low dimensions.

In this paper, we focus on the practical problem of lifting valid inequalities for (2) into
strong valid inequalities for (1). More specifically, given a valid inequality for (2) written as
(3), we want to obtain a function π : Rm → R such that∑

r∈R
ψ(r)sr +

∑
w∈W

π(w)yw ≥ 1 (4)

is a valid inequality for (1).
In theory, the best possible sets of lifting coefficients can be computed by optimizing over

the polar set of (1). This approach has been applied to corner relaxations by Louveaux, Poirrier
and Salvagnin [21] in order to measure the strength of their different variations. However, it
involves enumerating a subset of the points of (1), which is computationally expensive and
cannot be expected to perform well in a general-purpose cut generator.

An alternative method, which is computationally cheaper, is to compute the so-called trivial
lifting coefficient. Given a valid inequality (3), Gomory and Johnson [14] and Balas and Jeroslow

2

[4] proved that, if π is defined as

π(w) = inf
k∈Zn

ψ(w + k), (5)

then (4) is valid inequality for (1). Such function π is called the trivial lifting of ψ. Under the
assumption that (4) must be a valid inequality for any choice of R and W , Dey and Wolsey
[11] and Basu et al. [6] proved that, in some particular cases, any other definition of π leads to
weaker inequalities. In other words, in those cases, the computationally cheaper trivial lifting
actually yields the best possible lifting coefficients. Moreover, even when this is not the case,
one important advantage of the trivial lifting is that it is sequence independent, which means
that the order in which the coefficients are computed is irrelevant. The idea of potentially losing
coefficient strength in order to obtain a more computationally tractable sequence-independent
lifting has been applied to other valid inequalities for MIPs, like flow cover inequalities [15].

Despite its name, evaluating the trivial lifting function is far from trivial, particularly if
put into the context of where the problem arises: it is solved once for every integer variable
that needs to be lifted within a cut, so potentially thousands of times per cut. In addition, if
one thinks that several cuts are to be generated and that the cutting-plane generation is just
one small step in the whole solution process of a MIP, this can quickly become an impractical
problem to solve.

A naive approach to solve (5) is to evaluate ψ(w+k) for every k ∈ Zn such that ‖k‖ is smaller
than a fixed constant, chosen before the cut generation procedure starts. For the two-row case,
it has been proven that, if the constant is large enough, then this procedure finds the correct
answer [11]. Alternatively, in one of the first computational experiments with multi-row cuts,
instead of evaluating ψ at many points, Espinoza [12] evaluates this function exactly once, at a
point selected heuristically, with no guarantee that the exact trivial lifting coefficient is obtained.
This approach is computationally friendly, but produces inequalities that are not as strong as
they could be. In later experiments, Dey and Wolsey [11, 9] and Basu, Bonami, Cornuéjols
and Margot [5] carefully choose the convex lattice-free sets that give rise to inequality (4), so
that the trivial lifting function can be evaluated by using a closed formula. This approach,
however, limits the range of lattice-free sets that can be experimented with. Finally, it is worth
mentioning that, in principle, this problem can be solved in polynomial time for fixed n, since
it is a minimization of a convex function over integer points in polyhedra [22], or modeled
as a mixed-integer program by adding a continuous variable to handle the convex piecewise
linear objective function which leads to another polynomial time algorithm for fixed n [2]. Such
approaches, however, rely on the solution of the feasibility problem in fixed dimension as a
subroutine to solve the optimization problem. Solving one such MIP for each cut coefficient
would likely suffer from significant computational overhead, even if a fast fixed-dimension MIP
solver implementation were available.

In this paper, we develop a more practical method for evaluating the trivial lifting function
in two dimensions, which requires significantly fewer queries to the function ψ than the naive
procedure and that does not have significant computational overhead. For maximal lattice-free
sets, we prove that the algorithm is guaranteed to terminate in constant time, and for the cases
where the closed formula described in [5] is applicable, we show that it requires the same number

3

of evaluations to the function ψ as the closed formula. We also obtain an upper bound on the
number of evaluations for non-maximal lattice-free sets, which depends on the lattice-width of
the set and on its second covering minimum. Finally, we run computational experiments to
confirm that the algorithm works well in practice. The proposed method can also easily be
adapted to solve the lifting problem in higher dimensions, though in that context we do not
have theoretical or computational evaluations of its performance.

2 Main algorithm

In this section, we describe an alternative algorithm for the computation of trivial lifting coeffi-
cients on two-dimensional lattice-free sets. More specifically, let B ⊆ R2 be a convex lattice-free
set containing f ∈ R2 in its interior, and suppose ψ : R2 → R is the gauge function of B − f ,
i.e. ψ(r) = inf{t > 0 : f + 1

t r ∈ B}. For any w ∈ R2, our goal is to solve the minization
problem (5).

The following propositions give us the two main ideas behind the algorithm. The first
proposition shows that, if one component of k is fixed at any value (without loss of generality,
we fix k2), then the minimization problem becomes significantly easier.

Proposition 1. Let k̄2 ∈ R. If k∗1 is a solution for

min
k1∈R

ψ
(
w1+k1
w2+k̄2

)
(6)

then a solution for
min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
(7)

is either bk∗1c or dk∗1e.

Proof. This follows directly from the fact that ψ is a univariate convex function.

Therefore, given a solution for the continuous problem (6), we can easily determine an
optimal solution for the integer problem (7). Note, however, that (6) can be solved efficiently,
for example by modeling it as an LP. Since these ideas will be used throughout, it will be
convenient to define the following notation

g(ᾱ2) := min
α1∈R

ψ (α1
ᾱ2)

h(k̄2) := min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
.

The second proposition shows that, if the second component of k is fixed at a number with
very large magnitude, either positive of negative, then the optimal value also becomes very
large. Therefore, these values of k2 may be safely ignored. Note that the constants ζ+ and
ζ− that appear on the statement of the proposition do not depend on w or k, but only on the
definition of the function ψ.

4

Proposition 2. If k̄2 is a positive integer such that k̄2 > |w2|, then

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ ζ+(w2 + k̄2)

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ ζ−(k̄2 − w2)

where ζ+ = minα∈R ψ (α1) and ζ− = minα∈R ψ (α
−1).

Proof. First, note that

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ min

k1∈R
ψ
(
w1+k1
w2+k̄2

)
= min

α∈R
ψ
(α
w2+k̄2

)
since the integer problem is a restriction of the continuous one, and we can let α := w1 + k1.
Then, because ψ is positively homogeneous and w2 + k̄2 > 0, we have

min
α∈R

ψ
(α
w2+k̄2

)
= (w2 + k̄2) min

α∈R
ψ (α1) = ζ+(w2 + k̄2).

To obtain the second inequality, we proceed similarly. Since k̄2 − w2 > 0, we have

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ min

α∈R
ψ
(α
w2−k̄2

)
= ζ−(k̄2 − w2).

Algorithm 3 Trivial Lifting

1: function TrivialLifting(B, f, w)
2: Let g(ᾱ2) := minα1∈R ψ (α1

ᾱ2)
3: Let h(k̄2) := mink1∈Z ψ

(
w1+k1
w2+k̄2

)
4: ζ+, ζ− ← g(1), g(−1)
5: η∗ ← h(0)
6: k̄2 ← 1
7: repeat
8: η∗ ← min

{
η∗, h(k̄2), h(−k̄2)

}
9: k̄2 ← k̄2 + 1

10: until
(
k̄2 > |w2| and w2 + k̄2 >

η∗

ζ+ and k̄2 − w2 >
η∗

ζ−

)
11: return η∗

Given B, f and w, the function TrivialLifting described in Algorithm 3 computes the
optimum value of (5). At each iteration, it solves the two optimization problems

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
and min

k1∈Z
ψ
(
w1+k1
w2−k̄2

)
for some fixed value k̄2, starting from zero, and going up. By Proposition 1, these two problems
can be easily solved. The algorithm also keeps track of the smallest optimal value found so far,

5

in the variable η∗. It stops when k̄2 is such that three conditions are satisfied:

k̄2 > |w2| and w2 + k̄2 >
η∗

ζ+ and k̄2 − w2 >
η∗

ζ−
(8)

This is justified by Proposition 2. Indeed, if k̄2 is such that condition (8) holds, then

min
k1∈Z

ψ
(
w1+k1
w2+k̄2

)
≥ ζ+(w2 + k̄2) ≥ ζ+ η

∗

ζ+ = η∗

min
k1∈Z

ψ
(
w1+k1
w2−k̄2

)
≥ ζ−(k̄2 − w2) ≥ ζ− η

∗

ζ−
= η∗

Therefore, by considering any such k̄2, the incumbent value η∗ can never be improved. Also
note that, if k̄2 is sufficiently large, then condition (8) is automatically satisfied. Indeed, since
η∗ ≥ h(0), then

k̄2 > max
{
h(0)
ζ+ − w2,

h(0)
ζ−

+ w2, |w2|
}

implies that the condition holds. Therefore, the algorithm will always terminate.

3 Preprocessing step

Although finite, the algorithm described in Section 2 may require a large number of iterations
to terminate. In this subsection, we describe a preprocessing step that, when executed prior to
the algorithm, greatly increases its worst-case performance.

Example 4. To illustrate how pre-processing can improve the efficiency of Algorithm 3, con-
sider the following example. Let B and w, f ∈ R2 be defined as

B = conv
{(

22
69
7

)
,

(
−3
−11

7

)
,

(
−8
−26

7

)}
f =

(
2
3
1
6

)
w =

(
2
3
1
3

)

The set B, illustrated in Figure 1a, is very long and thin, which causes performance problems
for both the naive algorithm, as well as the algorithm described previously. In fact, Algorithm 3
requires seven iterations of the main loop to output the optimal value of 4

5 . Before feeding
this data into the algorithm however, we could apply to B,w and f the affine unimodular
transformation τ : R2 → R2 defined as

τ(x) =
(

1 −2
−5 11

)
x+

(
4
2

)
.

Let B̄, f̄ , w̄ be the set and vectors obtained, namely

B̄ = conv
{(

16
7
3
7

)
,

(
1
7
−2

7

)
,

(
−4

7
8
7

)}
f̄ =

(
1
3
1
2

)
w̄ =

(
0
3
1
3

)
.

Note that the integral part of w̄ was discarded. The set B̄, as Figure 1b illustrates, is much
smaller, and in particular, not very wide in the vertical direction. Feeding this new data into

6

(a) Original set B (b) Modified set B̄

Figure 1: Example of pre-processing.

Algorithm 3, we obtain the same optimal value of 4
5 as before, but now after a single iteration

of the main loop.

In the following, we describe exactly what properties we would like the affine unimodular
transformation τ to satisfy, and how such a transformation could be obtained for arbitrary
maximal lattice-free sets. If B ⊆ R2 is a maximal lattice-free set, then B is either a split, a
triangle or a quadrilateral. Following Dey and Louveaux [10], we further categorize maximal
lattice-free triangles as follows:

Definition 5 ([10]).

(i) A type-1 triangle is a triangle with integral vertices and exactly one integral point in the
relative interior of each facet (see Figure 2b);

(ii) A type-2 triangle is a triangle with at least one fractional vertex v, exactly one integral
point in the relative interior of two facets incident to v, and at least two integral points
on the third facet (see Figure 2c);

(iii) A type-3 triangle is a triangle with exactly three integral points on the boundary, one in
the relative interior of each edge (see Figure 2d).

Given d ∈ R2, we define the width of B along d as

ωd(B) = max
b∈B

dT b−min
b∈B

dT b.

First, we would like τ to be a transformation such that the width of τ(B) along the vertical
direction (0

1) is small. Algorithm 10 and Algorithm 11 show how to obtain such τ when B is
a maximal lattice-free triangle or quadrilateral, respectively. Both algorithms make use of the
following lemma, which is implied by the proofs presented by Hurkens [16].

Lemma 6 ([16]).

7

(i) If B is a maximal lattice-free triangle such that (0
0) , (0

1) , (1
0) are in the relative interiors

of distinct faces of B, then there exists d ∈ {(0
1) , (1

0) , (1
1)} such that

ωd(B) ≤ 1 + 2
3
√

3.

(ii) If B is a maximal lattice-free quadrilateral such that (0
0) , (0

1) , (1
0) are in the relative

interiors of distinct faces of B, then there exists d ∈ {(0
1) , (1

0)} such that

ωd(B) ≤ 2.

The bound given by Lemma 6 can be slightly improved when B is a maximal lattice-free
triangle of type 1 or 2, as the next lemma shows.

Lemma 7. If B is a maximal lattice-free triangle of type 1 or 2 such that (0
0) , (0

1) , (1
0) are in

the relative interiors of distinct faces of B, then there exists d ∈ {(0
1) , (1

0) , (1
1)} such that

ωd(B) ≤ 2.

Proof. If B is a type-1 triangle, then B must be the triangle depicted in Figure 2b. Clearly,
d = (1

0) satisfies the condition of the lemma. Now suppose that B is a type-2 triangle. We
have three subcases, depending on which facet of B contains multiple lattice points.

For the first subcase, suppose that the facet of B that contains multiple lattice points is the
one containing (1

0) in its relative interior. In this case, the vertices of B are

(1, α), (1,−β),
(−1
α+ β − 1 ,

β

α+ β − 1

)
,

for some α, β ∈ R+. If ω(1,0)(B) ≤ 2, we are done. Suppose ω(1,0)(B) > 2. Then α + β > 2,
and we have

ω(0,1)(B) = 1 + 1
α+ β − 1 ≤ 1 + 1

2− 1 = 2.

In any case, there exists d ∈ {(0
1) , (1

0)} satisfying the condition of the lemma.
For the second subcase, suppose that the facet of B that contains multiple lattice points is

the one containing (0
1). Let B̄ be defined as

B̄ =
{[

0 1
1 0

]
b : b ∈ B

}

Clearly, B̄ satisfies the conditions of the first subcase. Therefore, there exists d̄ ∈ {(0
1) , (1

0)}
such that ωd̄(B̄) ≤ 2, which implies that there exists d ∈ {(1

0) , (0
1)} such that ωd(B) ≤ 2.

Finally, for the third subcase, suppose that the facet of B that contains multiple lattice
points is the one containing (0

0). We proceed similarly to the previous subcase. Let B̄ be
defined as

B̄ =
{[

1 0
−1 −1

]
b+

[
0
1

]
: b ∈ B

}

8

Note that B̄ is a lattice-free triangle, since the transformation is unimodular. Also, the point
(0

0) is mapped to (0
1). Therefore, B̄ satisfies the conditions of the second subcase, and there

exists d̄ ∈ {(1
0) , (0

1)} such that ωd̄(B̄) ≤ 2. We conclude that there exists d ∈ {(1
0) , (1

1)} such
that ωd(B) ≤ 2.

Propositions 8 and 9 show that when Algorithm 10 or 11 is applied to an arbitrary maximal
lattice-free triangle or quadrilateral, it produces a transformed set that satisfies the conditions
to apply Lemmas 6 and 7. Specifically, our proposed preprocessing step generates lattice-free
sets B̄ that have the points {(0

0) , (1
0) , (0

1)} in the relative interiors of distinct faces of B, and
a small width ωd(B̄) for d = (0

1).
Note that in the preprocessing step, we also transform the given vector w (corresponding

to the variable to be lifted) in a specific way, resulting in points (ii) of Propositions 8 and 9,
which we will exploit in Section 4. In this process, we introduce the variable ε, which is the
middle point of B̄ along the vertical coordinate x2.

Proposition 8. Let B ⊆ R2 be a maximal lattice-free triangle containing f ∈ R2 in its interior,
and let w ∈ R2. Suppose v1, v2, v3 ∈ Z2 are lattice points in the relative interiors of three distinct
facets of B. If B̄, f̄ and w̄ are the values returned by Algorithm 10, and if λ is the width of B̄
along the vertical direction, then:

(i) λ ≤ 1 + 2
3
√

3 if B is a type-3 triangle, and λ ≤ 2 otherwise.

(ii) |f̄2 + w̄2 − b̄2| ≤ λ+1
2 for all b̄ ∈ B̄.

Proof. (i) It is clear that τ1 is an affine unimodular function that maps v1, v2, v3 to the points
(0

0) , (1
0) , (0

1), respectively. Furthermore, τ1(B) satisfies the conditions for item (i) of Lemma 6,
so there exists d such that ωd(τ1(B)) ≤ 1 + 2

3 . Additionally, by Lemma 7, if B is a maximal
lattice-free triangle of types 1 or 2, then ωd(τ1(B)) ≤ 2. If d = (0

1), then the direction that
minimizes the width of τ1(B) is already the vertical direction. In that case, τ2 = τ1, and we
are done. If d = (1

0), then the direction that minimizes the width of τ1(B) is the horizontal
direction. To obtain τ2, the algorithm composes τ1 with a transformation that flips the two
coordinates. Finally, if d = (1

1), then the direction that minimizes the width of τ1(B) is
perpendicular to the line connecting (1

0) and (0
1). To obtain τ2, the algorithm composes τ1

with a transformation that maps (0
0) , (0

1) , (1
0) to (0

1) , (0
0) , (1

0), respectively. The direction that
minimizes the width of τ2(B), therefore, is perpendicular to the line that connects (0

0) , (1
0),

which is the vertical direction, as desired.
(ii) Let ε := max{b2:(b1,b2)∈B}+min{b2:(b1,b2)∈B}

2 . By definition, |ε− b̄2| ≤ λ
2 , for all b̄ ∈ B̄. We

also claim that |f̄2+w̄2−ε| ≤ 1
2 . This is true, since, for every x ∈ R, if we let x̄← x+

⌊
ε+ 1

2 − x
⌋

then |x̄− ε| ≤ 1
2 , and it is the exact transformation applied to w′2 in the algorithms. The result

then follows, since, for every b̄ ∈ B̄, we have:

|f̄2 + w̄2 − b̄2| = |f̄2 + w̄2 − ε+ ε− b̄2|
≤ |f̄2 + w̄2 − ε|+ |ε− b̄2|

≤ 1
2 + λ

2

9

Proposition 9. Let B ⊆ R2 be a maximal lattice-free quadrilateral with f ∈ R2 in its interior,
and let w ∈ R2. Suppose v1, . . . , v4 ∈ Z2 are lattice points in the relative interiors of four
distinct facets of B. If B̄, f̄ and w̄ are the values returned by Algorithm 11, then (i) the width
of B̄ along the vertical direction is at most 2, and (ii)

|f̄2 + w̄2 − b̄2| ≤
3
2 ∀b̄ ∈ B̄.

Proof. Similarly to the proof of Proposition 8, it is clear that τ1 is an affine unimodular function
that maps v1, v2, v3 to the points (0

0) , (1
0) , (0

1), respectively. Since v̄4 ∈ Z2, since the area of
the quadrilateral defined by v̄1, . . . , v̄4 is one, and since no v̄i is a convex combination of the
others, then v̄4 can only be either (1

1) ,
(−1

1
)

or
(1
−1
)
. The transformation τ2 maps v̄1, . . . , v̄4

to (0
0) , (0

1) , (1
0) and (1

1). Furthermore, τ2(B) satisfies the conditions for item (ii) of Lemma 6,
therefore there exists d such that ωd(τ1(B)) ≤ 2. To finish, we proceed similarly to the proof
of (ii) in Proposition 8, replacing λ by its upper bound 2.

Algorithm 10 Preprocessing step for triangles

1: function Preprocess(B, f, w, v1, . . . , v3)
2: Let τ1(x) =

[
v2 − v1 v3 − v1

]−1 (
x− v1)

3: Let d ∈ {(1
1) , (1

0) , (0
1)} such that ωd(τ1(B)) is minimum.

4: Let τ2(x) =

τ1(x) if d = (0
1)[

0 1
1 0

]
τ1(x) if d = (1

0)[
1 0
−1 −1

]
τ1(x) +

[
0
1

]
if d = (1

1)

5: Let B̄ = {τ2(x) : x ∈ B}, f̄ ← τ2(f), w′ ← τ2(w)
6: Let ε ∈ R such that |b̄2 − ε| ≤ 1

2ω(0,1)(B̄) for all b̄ ∈ B̄
7: Let w̄1 ← w′1 and w̄2 ← w′2 +

⌊
ε+ 1

2 − f̄2 − w′2
⌋

8: Return B̄, f̄ , w̄

4 Complexity analysis

In this section we study the worst case complexity of Algorithm 3. First, in Subsection 4.1,
we assume only that the convex lattice-free set B ⊆ R2 is bounded and full-dimensional (i.e.
we do not assume maximality at this point). We obtain an upper bound on the number of
iterations of the algorithm, which depends on the second covering minimum of B and the width
of B along the vertical direction. Next, in Subsection 4.2, we focus on the case where B is
a maximal lattice-free triangle or quadrilateral. Assuming that B has been preprocessed, we
prove that Algorithm 3 requires at most a small number of iterations to finish.

10

Algorithm 11 Preprocessing step for quadrilaterals

1: function Preprocess(B, f, w, v1, . . . , v4)
2: Let τ1(x) =

[
v2 − v1 v3 − v1

]−1 (
x− v1)

3: Let v̄i ← τ1(vi) for i = {1, . . . , 4}

4: Let τ2(x) =

τ1(x) if v̄4 = (1
1)[

1 0
1 1

]
τ1(x) if v̄4 =

(1
−1
)

[
1 1
0 1

]
τ1(x) if v̄4 =

(−1
1
)

5: Let d ∈ {(1
1) , (1

0) , (0
1)} such that ωd(τ1(B)) is minimum.

6: Let τ3(x) =

τ2(x) if d = (0

1)[
0 1
1 0

]
τ2(x) if d = (1

0)

7: Let B̄ = {τ2(x) : x ∈ B}, f̄ ← τ2(f), w′ ← τ2(w)
8: Let ε ∈ R such that |b̄2 − ε| ≤ 1

2ω(0,1)(B̄) for all b̄ ∈ B̄
9: Let w̄1 ← w′1 and w̄2 ← w′2 +

⌊
ε+ 1

2 − f̄2 − w′2
⌋

10: Return B̄, f̄ , w̄

4.1 Convex lattice-free sets in general

Let B ⊆ R2 be a bounded and convex lattice-free set containing the point f ∈ R2 in its interior.
We do not assume that B is maximal. In this section, for any γ ∈ R+, we denote by γB the
set obtained by scaling B by a factor of γ, using f as the origin. That is,

γB = {γ(b− f) + f : b ∈ B}

=
{
x ∈ R2 : x

γ
+ f(γ − 1)

γ
∈ B

}
.

The two following lemmas prove that, if the union of all integer translations of γB cover R2,
then the value of the trivial lifting πB(w) is at most γ, for any w ∈ R2.

Lemma 12. For any w ∈ R2 and γ ∈ R+, if w + f ∈ γB, then ψB(w) ≤ γ.

Proof.

ψB(w) = inf
{
λ : w

λ
+ f ∈ B, λ > 0

}
= inf

{
λ : w + f

λ
+ f(λ− 1)

λ
∈ B, λ > 0

}
= inf {λ : w + f ∈ λB, λ > 0}
≤ γ

11

Lemma 13. If γB + Z2 = R2 for some γ ∈ R+ then πB(w) ≤ γ for all w ∈ R2.

Proof. Let w ∈ R2. Since γB+Z2 = R2, there exist b ∈ γB and k ∈ Z2 such that w+f = b+k.
This implies that w + f − k belongs to γB. By the previous lemma, πB(w − k) ≤ γ. But note
that πB(w − k) = πB(w), since applying integer translations to the ray does not change the
value of the trivial lifting function. We conclude that πB(w) ≤ γ.

In the following, let µ be the smallest non-negative number such that µB + Z2 = R2. This
number is also known as the second covering minimum of B [17]. As we recall, in order to
evaluate the function

πB(w) = min
k∈Z2

ψB(w + k),

for a given w ∈ R2, we computed mink1∈Z ψB
(
w1+k1
w2+k̄2

)
for different values of k̄2 ∈ Z. The

next lemma shows that, if µB does not intersect the horizontal line at level f2 +w2 + k̄2, for a
particular k̄2 ∈ Z, then such k̄2 can be safely discarded.

Lemma 14. Let k̄2 ∈ Z. Suppose there does not exist b ∈ µB such that b2 = f2 + w2 + k̄2.
Then

min
k1∈Z

ψB
(
w1+k1
w2+k̄2

)
≥ min

α∈R
ψB

(α
w2+k̄2

)
> µ.

Proof. Note that

min
k1∈Z

ψB
(
w1+k1
w2+k̄2

)
≥ min

k1∈R
ψB

(
w1+k1
w2+k̄2

)
= min

α∈R
ψB

(α
w2+k̄2

)
= µmin

α∈R
ψµB

(α
w2+k̄2

)
Since we have f +

(α
w2+k̄2

)
6∈ µB for every α ∈ R, then ψµB

(α
w2+k̄2

)
> 1 for every α ∈ R, and

the result follows.

A consequence of Lemma 14 is that, if µB is not very wide in the vertical direction, then
we only need to consider few values of k̄2 when computing the trivial lifting. This motivates
the choice of τ in Section 3. The next theorem shows that Algorithm 3 does not spend time
considering such useless k̄2.

Theorem 15. Let B ⊆ R2 be a lattice-free set with f ∈ R2 in its interior, with second covering
minimum µ ∈ R+. If w ∈ R2 is such that

|f2 + w2 − b2| ≤ σ ∀b ∈ µB, (9)

for some σ ≥ 1, then Algorithm 3 stops after at most bσc iterations of the main loop upon
receiving B, f and w as input.

Proof. If there exists b ∈ µB satisfying (9) with equality, we can always increase σ very slightly
to obtain

|f2 + w2 − b2| < σ ∀b ∈ µB,

while keeping bσc unchanged. We may assume, therefore, that every b ∈ µB satisfies (9) strictly.
If the algorithm stops before bσc iterations, we are done. Suppose, then, that it runs for at

12

least bσc iterations. First, we prove that, at the end of iteration bσc, we have η∗ = πB(w) ≤ µ.
Let Σ = {− bσc , . . . , bσc}. Clearly, at the end of iteration bσc, the variable η∗ has value
mink2∈Σ h(k2). By definition, we also have

πB(w) = min
k2∈Z

h(k2) = min
{

min
k2∈Σ

h(k2), min
k2∈Z\Σ

h(k2)
}

= min
{
η∗, min

k2∈Z\Σ
h(k2)

}
.

By Lemma 13, πB(w) ≤ µ. By Lemma 14, mink2∈Z\Σ h(k2) > µ. Therefore, η∗ = πB(w) ≤ µ.
Now we prove that the algorithm stops at the end of iteration bσc. First, we prove that k̄2 > |w2|.
At the end of iteration bσc, the value of k̄2 is bσc + 1. By assumption, σ > |f2 + w2 − b2| for
every b ∈ µB. Since f ∈ µB, we have σ > |w2|. Therefore, k̄2 = bσc + 1 ≥ σ > |w2|. Now we
prove that w2 + k̄2 >

η∗

ζ+ . Since k̄2 has value bσc + 1, there does not exist b ∈ µB such that
b2 − f2 − w2 = k̄2. By Lemma 14, and since k̄2 > |w2|, as proved earlier, we have

min
α∈R

ψB
(α
w2+k̄2

)
> µ ≥ η∗

⇒(w2 + k̄2) min
α∈R

ψB (α1) > η∗

⇒(w2 + k̄2)ζ+ > η∗

⇒w2 + k̄2 >
η∗

ζ∗

We can similarly prove that k̄2 − w2 >
η∗

ζ− . Therefore, at the end of iteration bσc, the loop
condition is satisfied, and the algorithm stops.

4.2 Maximal lattice-free sets

Now we suppose that B ⊆ R2 is a bounded maximal lattice-free set containing f in its interior.
In this case, B is either a maximal lattice-free triangle or a maximal lattice-free quadrilateral.
Maximal lattice-free sets are interesting in practice, since these are the sets that generate the
strongest valid inequalities for (2). Aside from triangles and quadrilaterals, maximal lattice-free
sets include splits, but the latter can be lifted easily. We will show that Algorithm 3 requires
at most one or two iterations of the main loop to finish, depending on whether B is a type-3
triangle or not.

It is well known that the second covering minimum of any lattice-free set must be at least
one. The following lemma shows the second covering minimum of B is also bounded above by
a constant.

Lemma 16. Let B ⊆ R2 is a full-dimensional maximal lattice-free set. If B is a type-1 triangle,
a type-2 triangle or a quadrilateral, then µ ≤ 1. If B is a type-3 triangle, then µ ≤ 2.

Proof. For any set B ⊆ Rn, we know that B + Zn = Rn if and only if τ(B) + Zn = Rn, where
τ is any unimodular affine transformation. Suppose B is a maximal lattice-free quadrilateral.
By applying an unimodular affine transformation, we may assume that the points (0

0) , (0
1) , (1

0)
and (1

1) are in the relative interiors of four distinct facets of B. Therefore, B contains the unit
square, and clearly B + Z2 = R2. The same argument applies for type-1 and type-2 triangles.
See Figure 2 for an illustration. Now suppose B is a type-3 triangle. We may assume that the

13

(a) Quadrilateral (b) Type-1 triangle (c) Type-2 triangle (d) Type-3 triangle

Figure 2: Proof of Lemma 16.

points (0
0) , (0

1) and (1
0) are in the relative interiors of three distinct facets of B. The set 2B,

therefore, contains a type-1 triangle as a subset. By the previous case, 2B + Z2 covers R2.

Now we proceed to obtain upper bounds on the number of iterations of Algorithm 3 for
maximal lattice-free sets, by applying Theorem 15. We consider two distinct cases, depending
on whether B is a type-3 triangle or not. In every case, we assume that B, f and w have
been preprocessed either by Algorithm 10 or by Algorithm 11. First, suppose that B is either
a type-1 triangle, or a type-2 triangle, or a quadrilateral. The next theorem shows that the
algorithm stops after a single iteration of the main loop.

Theorem 17. Let B ⊆ R2 be a maximal lattice-free quadrilateral or triangle of types 1 or 2
containing f ∈ R2 in its interior and having vertical width at most 2. If w ∈ R2 is such that

|f2 + w2 − b2| ≤
3
2 ∀b ∈ B,

then, upon receiving B, f and w as input, Algorithm 3 stops after at most a single iteration of
the main loop.

Proof. Let µ be the second covering minimum of B. By Lemma 16, µ ≤ 1. Since every
lattice-free set has second covering minimum at least one, then µ = 1. Therefore,

|f2 + w2 − b2| ≤
3
2 ∀b ∈ µB.

By Theorem 15, we conclude that Algorithm 3 requires at most
⌊

3
2

⌋
= 1 iteration to finish.

This case is closely related to the closed formula presented by Basu, Bonami, Cornuéjols
and Margot [5], which can compute trivial lifting coefficients under the assumption that B is a
type-1 or type-2 maximal lattice-free triangle. Although the formula itself is closed, it assumes
that B is already in some standard form, thus requires the application of a pre-processing step.
The formula works by evaluating the function ψB at six points, in the worst case, and taking
the minimum.

Theorem 17 proves that Algorithm 3 requires constant time to finish in the worst case. More
interestingly, however, this theorem shows that the algorithm requires at most a single iteration
of the main loop, implying that at most six calls to evaluate the function ψB are needed. This
matches the number of calls made by the closed formula presented by Basu et al. Also note that

14

Algorithm 3 requires the same number of calls when B is a maximal lattice-free quadrilateral,
while the aforementioned closed formula does not apply for quadrilaterals.

Now we consider the case where B is a type-3 triangle. In this case, since both the maximum
width along the vertical direction, as well as the second covering minimum, can be higher than
before, the algorithm may require more iterations to terminate. In the worst case, however, it
still requires at most a low, constant number of iterations.

Lemma 18. Let B ⊆ R2 be a lattice-free set with f ∈ R2 in its interior. Also, let w ∈ R2 and
γ ∈ R+ such that

|f2 + w2 − b2| ≤ γ ∀b ∈ B.

Then, for any µ ≥ 1,

|f2 + w2 − b̄2| ≤ γ(2µ− 1) ∀b̄ ∈ µB.

Proof. Let b̄ ∈ µB. By definition, there exists b ∈ B such that b̄ = µ(b − f) + f . Also, since
f ∈ B and |f2 + w2 − b2| ≤ γ for every b ∈ B, we have |w2| ≤ γ. Therefore,

|f2 + w2 − b̄2| = |f2 + w2 − µ(b2 − f2)− f2|
= |µ(f2 + w2 − b2)− (µ− 1)w2|
≤ µ|f2 + w2 − b2|+ (µ− 1)|w2|
≤ µγ + (µ− 1)γ
= γ(2µ− 1)

Theorem 19. Let B ⊆ R2 be a type-3 triangle containing f ∈ R2 in its interior and having
vertical width at most 1 + 2

3
√

3. If w ∈ R2 is such that

|f2 + w2 − b2| ≤ 1 + 1
3
√

3 ∀b ∈ B,

then, upon receiving B, f and w as input, Algorithm 3 stops after at most four iterations of the
main loop.

Proof. Let µ be the second covering minimum of B. By Lemma 18,

|f2 + w2 − b2| ≤
(

1 + 1
3
√

3
)

(2µ− 1) ∀b ∈ µB.

Since µ ≤ 2 by Lemma 16, we have

|f2 + w2 − b2| ≤ 3 +
√

3 ∀b ∈ µB.

Therefore, by Theorem 15, we conclude that Algorithm 3 requires at most
⌊
3 +
√

3
⌋

= 4
iterations to finish.

15

It is worth noting that the upper bound on the number of iterations obtained in Theorem 19
is a worst-case upper bound and that, the actual run time for some type 3 triangles can be
smaller. For instance, the example shown in Figure 3b is a type 3 triangle that is very close
to being a type 2 triangle (Figure 3a), so its trivial lifting coefficient and the runtime of the
algorithm are likely similar to the type 2 case. On the other hand, the worst case runtime
will be obtained by a type 3 triangle with high second covering minimum, like the one seen in
Figure 3c.

Another issue worth mentioning is that, computationally, it may be difficult to differentiate
between the cases in Figures 3a and 3b, due to numerical inaccuracy. This highlights a big
advantage of the generic trivial lifting algorithm presented in this work, which computes the
correct coefficient for any (even non-maximal) lattice-free set, as opposed to one that relies on
the particular format of the maximal lattice-free set.

(a) Type-2 triangle (b) “Good” type-3 triangle (c) “Bad” type-3 triangle

Figure 3: Illustration of “good” and “bad” type 3 triangles.

5 Computational experiments

In order to evaluate the practical efficiency of Algorithm 3, we implemented it and compared it
against two variations of the naive method described in the introduction and against a black-box
MIP solver given the formulation of Averkov and Basu [2].

5.1 Algorithms and variations

Two variations of Algorithm 3 were implemented and tested. The first variation (bound-orig)
applies the procedure directly to the input data, without performing any kind of preprocessing,
while the second variation (bound-pre) applies the preprocessing step described in Section 3.
Both variations were implemented in standard C, and do not make use of any external depen-
dencies. In order to evaluate the function

min
α1∈R

ψ

(
α1
ᾱ2

)
(10)

where ᾱ2 is fixed, an ad-hoc method was used, instead of a generic LP solver. More precisely,
if B ⊆ R2 is a polyhedron containing f ∈ R2 in its interior, then B can be written as

B = {x ∈ R2 : di(x− f) ≤ 1, i ∈ {1, . . . , t}}

16

where d1, . . . , dt ∈ R2. Then (10) is equivalent to the linear program

minimize ε

subject to ε− di1α1 ≥ di2ᾱ2 i = 1, . . . , t
ε, α1 free

Since, in our experiments, B is always a maximal lattice-free set, this LP has at most a constant
and very small number of bases. Instead of calling a generic LP solver, we simply enumerated
all these bases, and found the one with best objective value.

We also implemented and tested two variations of the naive trivial lifting algorithm. The
first variation (naive-fixed) simply evaluates the function ψ(w + k) for all k ∈ [−M,M]2,
where M is a large constant which does not depend on any input data. During our tests, this
value was fixed to 50. This variation is the simplest to implement, and probably the most
widespread, but does not always produce the correct answers, since, for every fixed M , there is
always a lattice-free set B ⊆ R2 such that M is not large enough for B. The second variation
(naive-bbox) solves this problem by computing the bounding box for each lattice-free set B,
and evaluating all ψ(w+ k) for all k such that f +w+ k is either inside or reasonably close to
the bounding box.

All computations, for all the variations previously described, were performed in floating
point arithmetic, due to the observation that small arithmetical errors are not amplified by the
algorithms, and therefore have no significant impact in the final cut coefficient. The code used
to evaluate the function ψ(w) for a certain w ∈ R2 was also exactly the same.

Finally, we also modelled (5) as a mixed-integer linear program with a fixed number of
variables, as described in [2], and we solved it using IBM ILOG CPLEX, version 12.4. We
refer to this implementation as mip. Because we use a generic MIP solver (based on branch-
and-bound and the simplex method), even in fixed dimension, the worst-case running time is
exponential in the encoding size of the problem, while it could be polynomial in theory. This
choice was made because, to the best of our knowledge, there is no currently-available MIP solver
that is polynomial in fixed-dimension and competitive with CPLEX, for MIPs containing both
continuous and integral variables.

5.2 Instances

For our computational experiments, an instance of the trivial lifting problem consists of a
convex lattice-free set B ⊆ R2, along with an interior point f ∈ R2, and a list of rays w1, . . . , wk
that should be lifted. We use a list of rays, instead of a single ray, since, in practice, a cut
generator usually needs to lift, for the same intersection cut, multiple rays corresponding to
different integer variables. By receiving a list of rays in advance, the cut generator may perform
a preprocessing step exactly once, before the trivial lifting computations begin, instead of one
time for each ray. The decision of whether to apply some costly preprocessing step could also
depend on the number of rays to be lifted, although we limited ourselves to a fixed choice here.

In our experiments, we used two lists of lattice-free sets. The first list was obtained by
running the two-row intersection cut generator implemented by Louveaux and Poirrier [20] on
the benchmark set of the MIPLIB 2010 [18] and capturing, for each intersection cut generated,

17

bound-pre bound-orig naive-bbox naive-fixed mip

Average (ms) 0.105 0.994 12.256 37.669 184.936
Median (ms) 0.108 0.124 3.400 37.320 143.600
Maximum (ms) 0.172 58.604 2762.880 49.360 2753.200
Failure Rate 0.0 % 0.0 % 0.1 % 0.3 % 0.0 %
Best 88.1 % 29.1 % 0.0 % 0.0 % 0.0 %
Avg Ratio to Best 1.007 9.207 119.458 364.238 1779.962

Table 1: Running times statistics: original lattice-free sets, 100 rays per set.

the associated lattice-free set. This list was then filtered to exclude splits, since these can be
lifted easily, and non-maximal lattice-free sets, since these can be transformed into maximal
lattice-free sets. Finally, a sample of 100 lattice-free sets from this list, picked randomly, was
considered for our experiments. The second list of lattice-free sets was obtained by applying a
shear transformation to each set on the first list. The precise transformation was given by

f(x) =
[
51 5
10 1

]
x.

This transformed list has sets that resemble the set from Figure 1a, and can be seen as a
pathological scenario for trivial lifting algorithms.

For each lattice-free set on each list, we also randomly generated a fixed number of rays wi,
uniformly distributed inside the box [0, 1)2. The lists of rays were generated randomly, since
we observed that the choice of rays to be lifted had negligible impact in the performance of
the algorithms considered. Most of the impact came, instead, from the choice of lattice-free
sets. This also allowed us to evaluate the impact of lifting a different number of rays for each
lattice-free set.

5.3 Results and discussion

First, we focus on the unmodified list of lattice-free sets obtained from the cut-generator. Table 1
summarizes the CPU running times that each of the four algorithms took to process this list
of lattice-free sets, with 100 randomly generated rays per set. The running time to process one
lattice-free set includes any time spent on preprocessing the set, plus the time spent computing
the lifted coefficients for all the rays. For each algorithm, the table shows the average, the
median and the maximum running times in milliseconds to process each set. The table also
shows the percentage of sets for which at least one cut coefficient was calculated incorrectly.

As Table 1 shows, algorithm bound-pre presented the fastest average running time among
all variations for this set of instances, taking only 0.105 ms on average to process each set. This
was more than 9, 110, 350 and 1700 times faster on average than bound-orig, naive-bbox,
naive-fixed and mip, respectively. It performed consistently well on all instances, having
a maximum running time of only 0.172 ms, which is approximately double the median. Al-
gorithms bound-orig and naive-bbox, on the other hand, presented significant slowdown for

18

bound-pre bound-orig naive-bbox naive-fixed mip

Average (ms) 0.106 8.276 425.522 37.632 1675.956
Median (ms) 0.108 0.800 31.600 37.280 395.200
Maximum (ms) 0.176 858.920 12413.200 49.720 102587.200
Failure Rate 0.0 % 0.0 % 4.0 % 10.0 % 1.7 %
Best 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Avg Ratio to Best 1.000 76.234 4107.413 358.635 16133.856

Table 2: Running times statistics: transformed lattice-free sets, 100 rays per set.

some instances, having maximum running times of 58, 2762 ms and 2753 ms respectively, which
is more than 470, 800 and 19 times their medians. Although algorithm naive-fixed was con-
sistent and had a better worst-case running time than naive-bbox, we note that it failed to
compute some coefficients correctly.

Table 1 also shows that, for each instance, the best running time was obtained either by
bound-pre or bound-orig, and never by the other algorithms. Algorithms bound-pre and
bound-orig presented average ratio-to-best of 1.007 and 9.207 respectively. This implies that,
although bound-orig was faster than bound-pre for some instances, it was only very slightly
so. For instances where bound-pre was faster than bound-orig, however, the difference in
running times was much more significant.

Now we consider the second list of lattice-free sets, obtained by applying a shear transforma-
tion to the sets of the first list, with 100 randomly generated rays per set. Table 2 summarizes
the running times for all algorithms. The transformation had virtually no impact on the perfor-
mance of algorithm bound-pre. Both its average and maximum running times remained almost
exactly the same as before. Algorithms bound-orig, naive-bbox and mip, on the other hand,
became on average 8, 34 and 9 times slower than before, respectively. Compared to bound-pre,
algorithms naive-bbox and mip were, on average, more than 3 orders of magnitude slower.
The table also shows that failure rate of algorithm naive-fixed increased considerably, to
10%. Algorithm mip also calculated some coefficients incorrectly, due to insufficient numerical
precision. Algorithm bound-pre presented the best performance for every instance in this set.

6 Conclusion

In this work we considered an efficient method for computing the so-called trivial lifting co-
efficients in two dimensions. Even though this problem may be considered somewhat well
understood in theoretical terms, an efficient implementation for it is still challenging, particu-
larly if one considers that this is a problem that may need to be solved thousands of times for
every cut that is added to an MIP.

We presented an algorithm that exploits the particular structure of the lifting function and
that uses ideas from algorithms for integer programs in fixed-dimensions [19]. By a careful
analysis, we show that the resulting algorithm has a very small upper bound on the number
of iterations, where the precise value of that bound can be expressed in terms of the second

19

covering minimum of the lattice-free set considered.
In practice, the algorithm performs at least two orders of magnitude faster than other

methods for computing the trivial lifting function, while still guaranteeing that the correct
trivial lifting coefficient is computed. Such speedup can mean the difference between the trivial
lifting being used or not in practice.

We end by noting that essentially similar ideas can also be applied to the computation of
the trivial lifting in higher dimensions. However, for those cases, we do not yet have such an
efficient implementation nor a significant and careful analysis of worst-case running time.

References

[1] Kent Andersen, Quentin Louveaux, Robert Weismantel, and Laurence Wolsey. Inequalities
from two rows of a simplex tableau. In Matteo Fischetti and David Williamson, editors,
Integer Programming and Combinatorial Optimization, volume 4513 of Lecture Notes in
Computer Science, pages 1–15. Springer Berlin / Heidelberg, 2007.

[2] Gennadiy Averkov and Amitabh Basu. Lifting properties of maximal lattice-free polyhedra.
Mathematical Programming, 154(1-2):81–111, 2015.

[3] Egon Balas. Intersection cuts – a new type of cutting planes for integer programming.
Operations Research, 1(19):19–39, 1971.

[4] Egon Balas and Robert G. Jeroslow. Strengthening cuts for mixed integer programs.
European Journal of Operational Research, 4(4):224–234, 1980.

[5] Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. Experiments with
two-row cuts from degenerate tableaux. INFORMS Journal on Computing, 23:578–590,
2011.

[6] Amitabh Basu, Manoel Campêlo, Michele Conforti, Gérard Cornuéjols, and Giacomo Zam-
belli. Unique lifting of integer variables in minimal inequalities. Mathematical Program-
ming, 141(1-2):561–576, 2013.

[7] Valentin Borozan and Gérard Cornuéjols. Minimal valid inequalities for integer constraints.
Mathematics of Operations Research, 34(3):538–546, 2009.

[8] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming, volume
271. Springer, 2014.

[9] Santanu S. Dey, Andrea Lodi, Andrea Tramontani, and Laurence A. Wolsey. On the
practical strength of two-row tableau cuts. INFORMS Journal on Computing, 26(2):222–
237, 2014.

[10] Santanu S. Dey and Quentin Louveaux. Split rank of triangle and quadrilateral inequalities.
Mathematics of Operations Research, 36(3):432–461, 2011.

[11] Santanu S. Dey and Laurence A. Wolsey. Two row mixed-integer cuts via lifting. Mathe-
matical Programming, 124:143–174, 2010.

20

[12] Daniel G. Espinoza. Computing with multi-row Gomory cuts. Operations Research Letters,
38(2):115 – 120, 2010.

[13] Ralph E. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and
its Applications, 2(4):451 – 558, 1969.

[14] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner
polyhedra, part I. Mathematical Programming, 3:23–85, 1972.

[15] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Sequence independent
lifting in mixed integer programming. Journal of Combinatorial Optimization, 4:109–129,
2000.

[16] C.A.J. Hurkens. Blowing up convex sets in the plane. Linear Algebra and its Applications,
134:121 – 128, 1990.

[17] Ravi Kannan and László Lovász. Covering minima and lattice point free convex bodies,
pages 193–213. Springer Berlin Heidelberg, Berlin, Heidelberg, 1986.

[18] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and
Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103–163, 2011.

[19] Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of operations research, 8(4):538–548, 1983.

[20] Quentin Louveaux and Laurent Poirrier. An algorithm for the separation of two-row cuts.
Mathematical Programming, 143(1-2):111–146, 2014.

[21] Quentin Louveaux, Laurent Poirrier, and Domenico Salvagnin. The strength of multi-row
models. Mathematical Programming Computation, 7(2):113–148, 2015.

[22] Timm Oertel, Christian Wagner, and Robert Weismantel. Convex integer minimization in
fixed dimension. Available online at http://arxiv.org/pdf/1203.4175v1.pdf, 2012.

[23] Manfred W. Padberg. On the facial structure of set packing polyhedra. Mathematical
programming, 5(1):199–215, 1973.

21

http://arxiv.org/pdf/1203.4175v1.pdf

	Introduction
	Main algorithm
	Preprocessing step
	Complexity analysis
	Convex lattice-free sets in general
	Maximal lattice-free sets

	Computational experiments
	Algorithms and variations
	Instances
	Results and discussion

	Conclusion

