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The resolution of integer programming problems is typically performed via branch-and-bound. Nodes of

the branch-and-bound tree are pruned whenever the corresponding subproblem is proven not to contain a

solution better than the best solution found so far. This is a key ingredient for achieving reasonable solution

times. However, since subproblems are solved in floating-point arithmetic, numerical errors can occur, and

may lead to inappropriate pruning. As a consequence, optimal solutions may be cut off. We propose several

methods for avoiding this issue, in the special case of a branch-cut-and-price formulation for the Capacitated

Vehicle Routing Problem (CVRP). The methods are based on constructing dual feasible solutions for the LP

relaxations of the subproblems and obtaining, by weak duality, bounds on their objective function value. Such

approaches have been proposed before for formulations with a small number of variables (dual constraints),

but the problem becomes more complex when the number of variables is exponentially large, which is the

case in consideration. We show that, in practice, besides being safe, our bounds are stronger than those

usually employed, obtained with unsafe floating-point arithmetic plus some heuristic tolerance, all of this

at a negligible computational cost. We also discuss some potential advantages and other uses of our safe

bounds derivation.
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1. Introduction

Mixed-integer programming (MIP) is a fundamental tool in operations research. Great

progress has been made in MIP solvers like CPLEX (see ILOG (2013)), to the point

that MIPs are nowadays often used as subroutines for other problems (as an example

see Fischetti and Lodi (2003)). It is now common for even problems with hundreds of

thousands of variables and constraints to be considered easy (see Koch et al. (2011)).
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However, most MIP solvers work with floating-point (FP) arithmetic, which implies

that some of the decisions that are taken by the algorithms implemented within them can

be incorrect. This is due to the intrinsic numerical errors that accompany FP arithmetic

(Goldberg (1991)).

Some recent works (Steffy (2011), Espinoza (2006)) have shown that indeed these numer-

ical errors can lead to commercial solvers returning incorrect solutions. They highlight

some of the potential consequences that these can have. To give an idea of one such issue,

when correctness of an approach relies on obtaining a truly optimal solution (for instance

generation of local cuts, see Chvátal et al. (2013)), then the whole approach may be invalid

if one does not have a true optimal solution.

Several approaches have been proposed to deal with these computational errors in dif-

ferent components of a MIP solver. For instance, Applegate et al. (2007) discuss the exact

solution of linear programs, Cook et al. (2009) and Cornuéjols et al. (2013) address numer-

ical safety in the context of cutting planes, while Steffy and Wolter (2013) and Neumaier

and Shcherbina (2004) tackle the issue of obtaining safe bounds for MIPs. The works

in Cook et al. (2013) and Cook et al. (2011) deal with the design of a full exact MIP solver.

In this work we focus our attention on obtaining numerically safe dual bounds for linear

programming relaxations of a MIP formulation of the Capacitated Vehicle Routing Problem

(CVRP). In other words, we want to obtain dual bounds that are valid even in the presence

of the numerical errors in FP arithmetic.

The main difference between this work and the previous ones cited above is that all

those approaches have been proposed for MIPs with a fixed (and not too big) number of

variables. Such approaches, however, are not applicable to formulations that are solved

via column generation inside a branch-and-price or branch-and-cut-and-price framework,

which are the most successful types of formulations for the CVRP and several other routing

problems. The only other work that we are aware of that deals with numerically safe

bounds within a column generation-based framework is the one in Held et al. (2012) in the

context of the graph coloring problem.

We note that, in principle, to obtain a lower bound for a MIP, all one needs to do is

obtain an optimal solution to its LP relaxation, which can be provided by any floating

point LP solver. However, as mentioned before, in presence of numerical errors, optimality

may be hard to verify. Nonetheless, a lower bound may still be obtained if the dual solution
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returned is at least feasible for the dual of the LP relaxation. One problem is that even dual

feasibility is not guaranteed for the solution given by the solver. But more importantly, in

the context of column generation, what the LP solver returns is a potentially optimal dual

solution to a restricted version of the problem and one must use it to find violated dual

constraints (columns with negative reduced costs) to add those to the LP and iterate. This

is what makes the problem of obtaining safe dual bounds particularly challenging in the

context of column generation.

After this discussion, we highlight the main contributions of our work, which are the

following:

1. We show how the numerically safe bounds proposed in Held et al. (2012) can be

computed within the context of the CVRP.

2. In addition to the approach proposed in Held et al. (2012), we propose several different

approaches to computing such safe bounds, that are particular to the structure of the

formulation of the CVRP (but can be nicely adapted to different variants of the problem

as well). We show that these new safe bounds are in practice better than the safe bounds

proposed by Held et al. (2012).

3. We discuss other applications of obtaining those safe bounds and perform extensive

computational experiments to draw empirical conclusions.

The outline of the paper is as follows. In Section 2 we introduce the CVRP and the

formulation under consideration, including the pricing used for column generation. Sec-

tion 3 discusses how to obtain valid lower bounds given an approximately feasible dual

solution. While all the above sections deal with results assuming no numerical errors occur,

they build the basic necessary results that enable us to obtain numerically safe bounds

even in the presence of numerical errors. Section 4 discusses such results. Computational

experiments are presented in Section 5, and a conclusion is left for Section 6.

2. The Capacitated Vehicle Routing Problem formulation

Let G= (V,E) be an undirected graph with vertices V = {0,1, . . . , n}. Vertex 0 represents

the depot, and each remaining vertex i represents a client with an associated positive

demand di. The set of client vertices is denoted by V+ = {1, . . . , n}. Each edge e∈E has a

positive length `e. Given G and two positive integers (K and C), the Capacitated Vehicle

Routing Problem (CVRP) consists of finding routes for K vehicles satisfying the following
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constraints: (i) each route starts and ends at the depot, (ii) each client is visited by a single

vehicle, and (iii) the total demand of all clients in any route is at most C. The goal is to

minimize the sum of the lengths of all routes. This classical NP-hard problem is a natural

generalization of the Traveling Salesman Problem (TSP), and has widespread application

itself. The CVRP was first proposed by Dantzig and Ramser (1959) and has received close

attention from the optimization community since then.

We will use the following notation throughout the paper. Whenever we refer to an

undirected edge from i to j, we use ij. For any S ⊆ V , we use δ(S) := {uv ∈E : u∈ S,v /∈ S}.
Also, we use δ(v) to represent δ({v}).

Given a set S ⊆ V+, let d(S) be the sum of the demands of all vertices in S. Also, let

r(S) = dd(S)/Ce. A classical formulation for the CVRP uses xe to represent the number

of times a vehicle traverses edge e. Then the CVRP can be formulated as

min
∑
e∈E

lexe

s.t.
∑
e∈δ(i)

xe = 2 ,∀ i∈ V+ (1)

∑
e∈δ(0)

xe = 2 ·K (2)

∑
e∈δ(S)

xe ≥ 2 · r(S) ,∀S ⊆ V+ (3)

xe ≤ ue ,∀e∈E

xe ≥ 0 ,∀e∈E

x ∈ZE,

where ue = 2 if e ∈ δ(0) and ue = 1 otherwise. Constraints (1) state that each client is

visited once by some vehicle, whereas (2) states that K vehicles must leave and enter the

depot. Constraints (3) are rounded capacity inequalities, which require all subsets to be

served by enough vehicles.

We will actually consider a more general formulation by replacing the constraints (3)

by a generic set of cuts (αk)Tx ≥ αko , for all k ∈ κ, which can include the cuts (3), but

also many other cuts including framed capacity, strengthened comb, multistar, partial

multistar, generalized multistar and hypotour cuts (see Letchford et al. (2002), Lysgaard

et al. (2004)), or even branching constraints.
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Alternatively, a formulation with an exponential number of columns can be obtained by

defining variables (columns) that correspond to q-routes. A q-route is a walk i0i1i2 . . . iL

with i0 = iL = 0, i1, i2, . . . , iL−1 ∈ V+ and
∑L−1

k=1 dik ≤C. Let q1, . . . , qp be the set of all possible

q-routes. Moreover, let qej be the number of times edge e appears in the q-route qj. Then

we can define a variable λj for every q-route qj. By using the equation xe =
p∑
j=1

qej · λj and

substituting xe in the above formulation, we get the following Dantzig-Wolfe formulation:

min
∑p

j=1

(∑
e∈E leq

e
j

)
λj

s.t.
∑p

j=1

(∑
e∈δ(i) q

e
j

)
λj = bi ,∀i∈ V∑p

j=1

(∑
e∈E α

k
eq
e
j

)
λj ≥ αk0 ,∀k ∈ κ∑p

j=1 q
e
jλj ≤ ue ,∀e∈E

λj ≥ 0 ,∀j ∈ {1, . . . , p} ,

(DWM)

where bi = 2K if i is the depot and bi = 2 otherwise, and ue = 2 if e ∈ δ(0) and ue = 1

otherwise. Note that we omit here the integrality constraints for the sake of conciseness.

The details on how a solution to this LP can be embedded within a branch-and-bound

framework to obtain an exact algorithm are described in Fukasawa et al. (2006).

The dual of (DWM) is

max
∑
i∈V

biωi +
∑
k∈κ

αk0πk +
∑
e∈E

ueρe

s.t.
∑
i∈V

( ∑
e∈δ(i)

qej

)
ωi +

∑
k∈κ

(∑
e∈E

αkeq
e
j

)
πk +

∑
e∈E

qejρe ≤
(∑
e∈E

leq
e
j

)
,

∀j ∈ {1, . . . , p}

ω free, π≥ 0, ρ≤ 0.

(DW-DUAL)

Since (DWM) is an LP with an exponential number of variables, one needs to per-

form column generation. The pricing problem is solved by dynamic programming and is

described in the next section.

We note that the most recent and most successful approaches to solving the CVRP

(e.g. Baldacci et al. (2011), Contardo and Martinelli (2014), Pecin et al. (2014)) are based

on using more complex structures instead of q-routes in (DWM). Here, we choose to use

q-routes since:

1. it is simpler and easier to present in terms of notation,
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2. the purpose of this article is not to solve larger instances of the CVRP, but to present

a concept and development that can be applied to branch-cut-price approaches to it and

other related problems, and

3. the results we present here can be easily generalized to those other more complex

structures.

2.1. Dynamic programming

The pricing of q-routes is a thoroughly studied topic (see e.g. Irnich and Villeneuve (2006)).

However, we describe its basics here since some of our results will be easier to understand

based on this exposition. We also use it to discuss how to solve the pricing problem despite

arithmetic errors later on.

Given a basis of (DWM), the task of the pricing step is to find columns with a negative

reduced cost, or prove that all reduced costs are nonnegative. Equivalently, we want to

find constraints of (DW-DUAL) that are violated by the dual solution associated to that

basis, or prove that all constraints are satisfied. Besides bound constraints π ≥ 0 and

ρ≤ 0, (DW-DUAL) has one constraint for every j ∈ {1, . . . , p}. Introducing slack variables

sj ≥ 0, these constraints can be written as

∑
i∈V

∑
e∈δ(i)

qej

ωi +
∑
k

(∑
e∈E

αkeq
e
j

)
πk +

∑
e∈E

qejρe + sj =

(∑
e∈E

leq
e
j

)
,

for all j ∈ {1, . . . , p}. Note that the slack sj corresponds in (DWM) to the reduced cost of the

variable λj. We can find the value of the smallest sj by solving the problem minj∈{1,...,p}{sj},

i.e.,

min
j∈{1,...,p}

∑
e∈E

leq
e
j −
∑
i∈V

∑
e∈δ(i)

qej

ωi−
∑
k

(∑
e∈E

αkeq
e
j

)
πk−

∑
e∈E

qejρe


= min

j∈{1,...,p}

∑
e∈E

le− ∑
i:e∈δ(i)

ωi−
∑
k

αkeπk− ρe

 qej


= min

j∈{1,...,p}

{∑
e∈E

c̄eq
e
j

}
, (4)

where we define the reduced cost c̄e of an edge as

c̄e := le−
∑
i:e∈δ(i)

ωi−
∑
k

αkeπk− ρe. (5)
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The expression (4) corresponds to finding a minimum cost q-route in a graph with edge

costs c̄e, for e ∈ E. This problem is solved adopting a dynamic programming approach,

storing, for every (i, d), a minimum cost route from the depot to node i∈ V+ with a vehicle

carrying a load d. Routes are computed for increasing d ∈ {0, . . . ,C}. A minimum cost

route is then found by taking a minimum over all (i, d), each time adding the return edge

i0. In practice, all routes with a negative cost can be added as new columns.

Note that a similar approach can be used for different definitions of q-routes, like for

instance if we forbid small cycles, or more generally for any state space relaxation of the

elementary shortest path problem. Then, multiple routes are stored for each (i, d), along

with some set U of vertices already visited (see Irnich and Villeneuve (2006)). While the

original problem can be solved in O(nC) operations, this variant, with cycles of length up

to k excluded, requires O(nC · k!). Therefore, it can only be solved for small values of k,

in our case k≤ 3.

We denote by −∆ the cost of the q-route found above, i.e. the smallest (possibly most

negative) reduced cost of a column of (DWM) for the current basis. We use this slightly

counterintuitive notation for now to be compatible with later discussion where we will

focus on ∆ as being the maximum violation of a constraint in (DW-DUAL). Note that

we can easily compute a slightly more fine-grained information. Specifically, for any node

i∈ V+, we can compute a shortest q-route whose return edge is i0, by taking the minimum

over all d for i fixed. Also, since the edge costs c̄e are symmetric, a shortest q-route that

ends with edge i0 is also a shortest q-route that starts with edge 0i. In other words, we

are computing

∆e := − min
j : qej≥1

{∑
f∈E

c̄fq
f
j

}
, (6)

for e ∈ δ(0), or in terms of the slack variables, ∆e :=−minj:qej≥1{s̄j}. We will see in Sec-

tion 3.2 that this additional information can be exploited to compute stronger safe bounds.

3. Bound correctors

The pricing problem presented in Section 2.1 returns to us a most negative reduced cost

column in (DWM). Equivalently, it provides a most violated constraint of (DW-DUAL)

together with its violation ∆> 0. In this section we will see how to use that information

to directly obtain valid dual bounds for (DWM).

Consider a general primal-dual linear programming pair:
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min cTx

s.t. Ax≥ b

x≥ 0

(P)

max bTy

s.t. AT
j y≤ cj,∀j = 1, . . . , p

y≥ 0

(D)

As mentioned in the introduction, a key requirement of any LP-based branch-and-bound

method is to be able to obtain valid lower bounds for problems of type (P) by means of a

dual feasible solution to (D). However, what modern LP solvers return as candidate dual

variables may not even satsify that condition. In this section, we tackle the problem of

obtaining lower bounds for (P) based on a solution ȳ that is almost feasible for (D). This

will be a key ingredient for us to be able to compute numerically safe lower bounds. Note,

however, that throughout this section we will assume that all calculations are made without

errors. Later on, we will describe how numerically safe lower bounds can be obtained even

when arithmetic errors are present, based on the results of this section.

Formally, suppose that ȳ≥ 0 is such that AT
j ȳ≤ cj+∆ for some ∆≥ 0 and all j = 1, . . . , p.

If ∆ = 0, then bT ȳ is a trivial lower bound for (P) and we are done. Now if ∆> 0, since

ȳ is not necessarily dual feasible, then we cannot say that bT ȳ is a valid dual bound.

However, under some conditions, one can construct from ȳ a dual feasible solution y′ and

then compute a valid lower bound bTy′.

We now present several different approaches to compute such valid lower bounds.

3.1. Scaling approach

Held et al. (2012) proposed the approach of setting y′ = αȳ for some 0<α< 1 to guarantee

that y′ is dual feasible. One implicit requirement for this approach to work is that the

constraints in the dual (D) are in ≤ format and that the right-hand-side is strictly positive

for all dual constraints.

Suppose that, for some ∆> 0, the dual vector ȳ ≥ 0 is such that AT
j ȳ ≤ cj + ∆ for all

j = 1, . . . , p. Also, let cmin = min
j=1,...,p

cj. Then, we can set y′ = cmin
cmin+∆

ȳ and we have, for all

j = 1, . . . , p, that

AT
j y
′ =

cmin
cmin + ∆

AT
j ȳ≤

cmin
cmin + ∆

(cj + ∆)≤ cj
cj + ∆

(cj + ∆) = cj.

The resulting dual bound will then be cmin
cmin+∆

bT ȳ. Note that the scaling factor does not

affect the sign of any dual variable, so as long as the original dual variables have the correct
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signs, then the scaled dual variables also do. Using the same logic, this approach can be

applied if there are other sign restrictions on the dual variables, provided that the original

variables ȳ satisfy those sign restrictions.

Note that for the case of the CVRP, (DW-DUAL) satisfies the required conditions that

all constraints are in ≤ format and the right-hand side is strictly greater than zero. Fur-

thermore, it is easy to compute cmin since the right-hand sides of the dual constraints are

the costs of each q-route. The cheapest possible q-route consists of twice the cheapest edge

out of the depot (going from the depot to that particular customer and back).

This leads to the following Proposition.

Proposition 1. Let (ω̄, π̄, ρ̄) ∈RV ×Rκ
+×RE

− and let ∆≥ 0 be the largest violation of

any constraint of (DW-DUAL) by (ω̄, π̄, ρ̄). Then,

2lf
2lf + ∆

(∑
i∈V

biω̄i +
∑
k∈κ

αk0π̄k +
∑
e∈E

ueρ̄e

)
(7)

is a valid lower bound for (DWM), where f := arg min{le : e∈ δ(0)}.

3.2. Using the dual variables corresponding to primal bound constraints

A second approach for correcting dual infeasibilites was proposed in Applegate et al. (2006).

When we have upper bounds on all primal variables, the primal/dual problems become:

min cTx

s.t. Ax≥ b

−x≥−u

x≥ 0

(PB)

max bTy−uTρ

s.t. AT
j y− ρj ≤ cj,∀j = 1, . . . , p

y≥ 0
(DB)

The approach in Applegate et al. (2006) notes that one can simply check if each con-

straint is violated, and if so, increase the corresponding ρj by the violation amount. The

price we pay for this adjustment is a reduction in the value of the dual bound by uj times

the violation amount. In particular, when uj = 1, which is the case for several combinatorial

optimization problems, the violation penalty with this approach is moderate.

However, when the number of columns is extremely large, checking the violation of each

dual constraint is impractical. As an alternative, if we know that all constraints are violated
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by at most ∆> 0, then we can uniformly reduce all ρj elements, incurring a reduction in

the value of the dual bound of p∆ (if all uj = 1). This constitutes a significant loss when

p is huge, as is the case for (DWM). Therefore, this approach is not desirable. We propose

here a variant based on the particular structure of the CVRP.

Recall that, for our formulation, the dual constraints take following form:

∑
i∈V

∑
e∈δ(i)

qej

ωi +
∑
k

(∑
e∈E

αkeq
e
j

)
πk +

∑
e∈E

qejρe ≤

(∑
e∈E

leq
e
j

)
.

We can use the ρe variables, which correspond to the upper bound constraints on the

original xij variables, to correct for any violation of the dual constraints. However, the

problem is slightly different here because ρe variables are not slacks. We propose to build a

dual feasible solution (ω,π, ρ′) where ρ′ = ρ+τ . If ∆> 0 is an upper bound on the violation

of the dual constraints, τ can be found by solving exactly the following problem:

min
∑
e∈E

ueτe

s.t.
∑
e∈E

qejτe ≥ ∆ ,∀j ∈ {1, . . . , p}

τ ∈R|E|+ .

(8)

Note that any feasible solution to (8) provides a dual feasible solution to (DW-DUAL),

while the objective function of (8) yields one that minimizes the cost of the correction in

the objective function of (DW-DUAL).

By letting t := τ/∆ and rewriting (8) as ∆ times

min
∑
e∈E

uete

s.t.
∑
e∈E

qej te ≥ 1 ,∀j ∈ {1, . . . , p}

t∈R|E|+ ,

(9)

we observe that (9) is a fractional covering problem: find a nonnegative cost assigned to

each edge so that every q-route has total cost at least 1. As shown by Lemma (1), this

problem can be solved in closed form.

Lemma 1. The optimal objective function value of (9) is n.
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Proof. We start by constructing a feasible solution to (9). We let te := 1
2

if e∈ δ(0), and

te := 0 otherwise. Since every q-route includes exactly two edges in δ(0), the constraints

are satisfied. The cost of this solution is
∑

e∈δ(0) 2te = n.

Next, we construct a feasible solution for the dual of (9). The dual of (9) is given by

max
∑

j∈{1,...,p}

γj

s.t.
∑

j∈{1,...,p}

qejγj ≤ ue ,∀e∈E

γj ∈Rp
+.

(10)

The optimization problem (10) is fractional packing problem: assign costs to each q-route

such that the total cost of any edge is at most ue. We set γj := 1 if route j goes from

the depot to some node i and immediately back to the depot. There are exactly n such

q-routes. Otherwise, γj := 0. For an edge e /∈ δ(0), the left-hand side of the constraint will

be zero. For an edge e∈ δ(0), we have ue = 0, and exactly two q-routes with γj = 1 will use

that edge, yielding
∑

j∈{1,...,p} q
e
jγj = 2≤ ue.

We now have a primal feasible solution and a dual feasible solution to (9) with value n.

By weak duality, those solutions are optimal. �

We can thus construct a feasible (and optimal) solution to (8) with value n∆, which

leads to the following proposition.

Proposition 2. Let (ω̄, π̄, ρ̄) ∈RV ×Rκ
+×RE

− and let ∆> 0 be the largest violation of

any constraint of (DW-DUAL) by (ω̄, π̄, ρ̄).

Then, (∑
i∈V

biω̄i +
∑
k∈κ

αk0π̄k +
∑
e∈E

ueρ̄e

)
−n∆ (11)

is a valid lower bound for (DWM).

3.2.1. Tightening the bound in (11): By analyzing the dynamic programming algo-

rithm in a bit more detail, one slightly tighter lower bound is obtained through the following

refinement. Recall that in (6), we defined ∆e :=−minj:qej≥1{sj}, for all e ∈ δ(0). That is,

∆e is the largest violation of any dual constraint corresponding to a q-route that includes

the edge e.
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We now have a relaxed version of (8), that describes exactly the problem of finding a

minimal cost corrector τ

min
∑
e∈E

ueτe

s.t.
∑
e∈E

qejτe ≥ −sj ,∀j ∈ {1, . . . , p}

τ ∈R|E|+ .

(12)

Guided by Lemma 1, we derive the following result:

Lemma 2. There exists a feasible solution to (12) with objective function value∑
e∈δ(0) ∆e.

Proof. We construct a feasible solution to (12) by letting τe := 1
2
∆e if e ∈ δ(0), and

τe := 0 otherwise. For all j, the left-hand side of the constraints becomes∑
e∈δ(0)

qej
1

2
∆e =

1

2

(
∆d + ∆f

)
,

for some d, f ∈ δ(0) such that d 6= f and qdj = qfj = 1, or d= f and qdj = qfj = 2. Using the

definition of ∆e, we get

1

2

(
∆d + ∆f

)
=

1

2

(
− min
k:qdk≥1

{sk}− min
k:qfj ≥1

{sk}

)
≥ 1

2
(−sj − sj) =−sj,

showing the feasibility of the solution τ . Its cost is
∑

e∈δ(0) ue
1
2
∆e =

∑
e∈δ(0) ∆e. �

This leads to the following proposition.

Proposition 3. Let (ω̄, π̄, ρ̄) ∈RV ×Rκ
+×RE

− and let ∆> 0 be the largest violation of

any constraint of (DW-DUAL) by (ω̄, π̄, ρ̄).

Then (∑
i∈V

biω̄i +
∑
k∈κ

αk0π̄k +
∑
e∈E

ueρ̄e

)
−
∑
e∈δ(0)

∆e (13)

is a valid lower bound for (DWM).

3.3. Using dual variables corresponding to degree constraints

Having developed the approach in the previous section, we considered the fact that we

could potentially do a similar strategy with other sets of dual variables. However, we note
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that due to the highly generic nature of the constraints (αk)Tx≥ αko , using variables π for

this would be quite challenging and probably not such a good idea.

On the other hand, the variables ω could potentially be used for this purpose. The

problem, as before, is to find a subset S ⊆ V of the variables ω such that
∑
i∈S

∑
e∈δ(i)

qej ≥ 1 for

every q-route j. Now, if 0 /∈ S and S 6= V+, then there is always a q-route for which that

sum is 0, namely the q-route 0-k-0 for k /∈ S. This means that the only two possible choices

are S = V+ or S = {0}.

If S = V+, we can note that
∑
i∈S

∑
e∈δ(i)

qej = 2, since every q-route must enter and leave S

exactly twice. So we can decrease wi by ∆/2 for all i ∈ S, which would incur a decrease

in the dual bound value of |S|∆ = n∆. On the other hand, if we take S = {0}, then we

still have
∑
i∈S

∑
e∈δ(i)

qej = 2, which means we can decrease w0 by ∆/2, which would incur a

decrease in dual bound value of ∆K ≤∆n, so S = {0} is clearly the better choice.

As before, given that we know ∆, all we need is to add −K∆ to the value of a dual (not

necessarily feasible) solution to obtain a safe and valid dual bound.

Proposition 4. Let (ω̄, π̄, ρ̄) ∈RV ×Rκ
+×RE

− and let ∆> 0 be the largest violation of

any constraint of (DW-DUAL) by (ω̄, π̄, ρ̄).

Then

(∑
i∈V

biω̄i +
∑
k∈κ

αk0π̄k +
∑
e∈E

ueρ̄e

)
−K∆ (14)

is a valid lower bound for (DWM).

3.4. Using a Lagrangian relaxation

It is well-known that the Dantzig-Wolfe reformulation is equivalent to doing Lagrangian

relaxation (see, e.g. Conforti et al. (2014)). We explore one last way to obtain safe dual

bounds by exploiting this equivalence.
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Recall that we are interested in obtaining valid lower bounds for the following Dantzig-

Wolfe formulation of the CVRP,

min
∑p

j=1

(∑
e∈E leq

e
j

)
λj

s.t.
∑p

j=1 λj =K∑p
j=1

(∑
e∈δ(i) q

e
j

)
λj = 2 ,∀i∈ V+∑p

j=1

(∑
e∈E α

k
eq
e
j

)
λj ≥ αk0 ,∀k ∈ κ∑p

j=1 q
e
jλj ≤ ue ,∀e∈E

λj ≥ 0 ,∀j ∈ {1, . . . , p} ,

(DWM)

in which we explicitly rewrote the first constraint of the original formulation, since we

always have
∑

e∈δ(0)

qej = 2.

By letting µ= λ/K, we observe that (DWM) can be rewritten as

min (
∑p

j=1

(∑
e∈E leKq

e
j

)
µj)

s.t.
∑p

j=1µj = 1∑p
j=1

(∑
e∈δ(i)Kq

e
j

)
µj = 2 ,∀i∈ V+∑p

j=1

(∑
e∈E α

k
eKq

e
j

)
µj ≥ αk0 ,∀k ∈ κ∑p

j=1Kq
e
jµj ≤ ue ,∀e∈E

µj ≥ 0 ,∀j ∈ {1, . . . , p} .

(DWM’)

Each variable in (DWM’) now corresponds to K times the edge incidence vector of a

q-route qj (which we represent by Kqj). Then, by the equivalence of the Dantzig-Wolfe

and Lagrangian relaxations, we know that the optimal value for (DWM’) is equal to the

optimal value for the following Lagrangian dual

zL = max
(ω,π,ρ)∈RV ×Rκ+×RE−

{zL(ω,π, ρ)} , (15)

where

zL(ω,π, ρ) := min
∑
e∈E

lexe +
∑
i∈V

(
bi−

∑
e∈δ(i)

xe

)
ωi +

∑
k

(
αk0 −

∑
e∈E

αkexe

)
πk

+
∑
e∈E

(ue−xe)ρe

s.t. x∈ conv({Kqj : j = 1, . . . , p}).

(16)

We then know that given any Lagrange multipliers ω,π, ρ such that π ≥ 0 and ρ ≤ 0,

the value of the minimization problem in (16) gives a lower bound on the optimal value
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of (DWM). Taking the multipliers ω,π, ρ as constants in the minimization problem, (16)

can be rewritten

∑
i∈V

biωi +
∑
k

αk0πk +
∑
e∈E

ueρe + min
∑

e∈E

(
le−

∑
i:e∈δ(i)ωi−

∑
k α

k
eπk− ρe

)
xe

s.t. x∈ conv({Kqj : j = 1, . . . , p}).

(17)

Note that for every extreme point x of conv({Kqj : j = 1, . . . , p}), we have that x/K is a

q-route, i.e. x/K = qj for some j ∈ {1, . . . , p}. The problem (17) thus becomes

∑
i∈V

biωi +
∑
k

αk0πk +
∑
e∈E

ueρe +K min
j=1,...,p

∑
e∈E

le− ∑
i:e∈δ(i)

ωi−
∑
k

αkeπk− ρe

 qej

 . (18)

Since the minimum in (18) measures the largest violation of any dual constraint, that

minimum is actually equal to ∆, so

zL(ω,π, ρ) =
∑
i∈V

biωi +
∑
k

αk0πk +
∑
e∈E

ueρe−K∆ (19)

Thus, the following result follows.

Proposition 5. Let (ω̄, π̄, ρ̄) ∈RV ×Rκ
+×RE

− and let ∆> 0 be the largest violation of

any constraint of (DW-DUAL) by (ω̄, π̄, ρ̄).

Then

(∑
i∈V

biω̄i +
∑
k∈κ

αk0π̄k +
∑
e∈E

ueρ̄e

)
−K∆ (20)

is a valid lower bound for (DWM).

Proposition 5 is exactly equivalent to Proposition 4. This section simply provides a

different approach for obtaining the same corrector.

4. Obtaining numerically safe lower bounds

Note that, up until now, all the dual bounds were derived assuming no numerical errors

occurred. From this point on, we will discuss how to deal with numerical errors in a safe

way.
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4.1. Computationally safe dynamic programming

We start by noting that all the propositions in Section 3 only required an upper bound ∆̄

on the violation of any dual constraint. In this section we focus on how to obtain such an

upper bound even in the presence of arithmetic errors.

Specifically, given (ω̄, π̄, ρ̄), for every i∈ V+, we need to find ∆̄i such that s̄j ≥−∆̄i, for all

j such that qij ≥ 1. In order to ensure that −∆̄i is a safe lower bound, any loss of precision

has to be controlled throughout the computation: (a) first, bound constraints are enforced

on (ω̄, π̄, ρ̄), (b) c̄e is computed with floating-point rounding towards minus infinity, (c) c̄e

is then converted to an integer value for passing as an input to the dynamic programming

procedure, rounding again towards minus infinity, (d) dynamic programming is performed

in integer arithmetic with no overflows, (e) the result is converted back to floating-point,

rounding towards minus infinity.

As noted in the point (d), the dynamic programming procedure is implemented in integer

arithmetic, and thus incurs no loss of precision. The reduced costs c̄e are converted to

integers c̃e by multiplying them by a large constant M , then rounding down to the closest

integer, i.e. c̃e := bMc̄ec. As the value of M is increased, we reduce the rounding error of the

latter operation, and obtain tighter lower bound −∆̄e on −∆e. However, we use standard

integer arithmetic with a fixed bit-width (64 bits), so if M is too large, integer overflows

can occur while performing dynamic programming. Let T be the largest integer such that

both T and −T are representable integers, and c̃(Q) be the cost of a q-route Q. In order

to avoid overflows, we seek a large value M such that |c̃(Q)| ≤ T for any q-route Q.

A first bound can be obtained by observing that any valid q-route has length at most

C + 1, because any node has demand at least 1 except for the depot. We thus know that

|c̃(Q)| ≤ (C + 1) max
e∈E
|c̃e|. (21)

Note that we compute the bound in floating-point arithmetic, so the multiplication in the

right-hand side must be computed with rounding towards plus infinity.

A tighter bound can be obtained as follows. Assume that a q-route Q is composed of

vertices i0, i1, . . . , iL = i0 = 0. For all k = 1, . . . ,L, the demand at node ik is given by dik ,

and we let ek = ik−1ik denote the kth edge along the q-route Q. The absolute value of its

cost c̃(Q) is given by

|c̃(Q)| ≤
L∑
k=1

|c̃ek | =
L−1∑
k=1

dik
|c̃ek |
dik

+ |c̃eL|
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≤
L−1∑
k=1

dik ·max
e∈E

{
|c̃e|

dmin(e)

}
+ max

e∈δ(0)
|c̃e|.

where

dmin(e) := min{di : i∈ V+ and e∈ δ(i)},

i.e. dmin(e) := min{di, dj}, for e= ij ∈E \ δ(0) and dmin(e) := dj, for e= 0j. Recall that the

total demand along the nodes visited by a q-route is at most C. Therefore,
∑L−1

k=1 dik ≤C,

and we obtain

|c̃(Q)| ≤Cmax
e∈E

{
|c̃e|

dmin(e)

}
+ max

e∈δ(0)
|c̃e|. (22)

Observe that the upper bound in (22) dominates the one in (21).

Taking into account that |bλc|< |λ|+ 1 for all λ∈R, and that dmin(e)≥ 1 for all e∈E,

we replace c̃e with bMc̄ec to obtain the expression

|c̃(Q,M)| ≤ Cmax
e∈E

{
|bMc̄ec|
dmin(e)

}
+ max

e∈δ−(0)
|bMc̄ec|

≤ Cmax
e∈E

{
M |c̄e|+ 1

dmin(e)

}
+ max

e∈δ−(0)
(M |c̄e|+ 1)

≤ C

(
M max

e∈E

{
|c̄e|

dmin(e)

}
+ 1

)
+M max

e∈δ−(0)
|c̄e|+ 1

≤ CM max
e∈E

{
|c̄e|

dmin(e)

}
+M max

e∈δ−(0)
|c̄e|+C + 1 ≤ T.

It is thus safe to choose any M such that

M ≤ (T −C − 1)/

(
Cmax

e∈E

{
|c̄e|

dmin(e)

}
+ max

e∈δ−(0)
|c̄e|
)
. (23)

By computing M under the appropriate rounding modes (rounding up all operations on

the denominator of the fraction and rounding down all other operations), one can guarantee

the validity of such upper bound, even with FP arithmetic.

4.2. Tying it all together

The first immediate use of the correctors described in Propositions 1, 2, 3, 4 and 5 is, as

previously stated, to compute numerically safe lower bounds for (DWM).

In order to do so, we use a numerically safe upper bound ∆̄ as described in Section 4.1 in

place of ∆. Then, for individual arithmetic operations, we make sure to obtain appropriate

bounds on the result: upper bounds if that result is subtracted or is in a denominator;
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lower bounds bounds otherwise. This is achieved by controlling the “rounding mode” of

the processor, as detailed below in Section 4.3.

For example, to compute the bound (7), we first compute an upper bound on 2lf +∆̄ by

rounding errors up on the sum, then compute the lower bound on
2lf

2lf+∆̄
by performing the

division while rounding errors down, and finally do all remaining sums and multiplication

rounding down. In the end, we get a value guaranteed to be lower than the value in (7)

and hence still a valid lower bound for (DWM). We refrain from detailing how safe bounds

can be computed for all other propositions, since the operations are analogous. Using this

approach, each of those bounds is easily computable in a numerically safe way to ensure

it is valid, regardless of arithmetic errors.

In addition, there are other potential advantages to using those propositions. One well-

known issue when dealing with column generation-type algorithms is dealing with toler-

ances to determine when the column generation process has converged. If these tolerances

are not chosen well enough, one may end up with a suboptimal solution to (DWM) and

thus with an invalid lower bound for the current node of the branch-and-bound tree. Fur-

thermore, one may also be faced with cycling, a situation in which the pricing algorithm

concludes that some columns have a negative reduced cost, but the LP solver decides that

they should not enter the basis, due to rounding errors or tolerances. Then, the LP solver

will not make any iteration and thus not change the dual variables, yielding exactly the

same columns to be generated over and over. These issues create the need for a careful

calibration of column generation tolerances, in conjunction with the tolerances of the LP

solver. However, with the Propositions 1-5 in hand, one can simply abort column genera-

tion at any point and still get a valid dual bound, regardless of whether true convergence

is attained.

This last point can be exploited even further and used to our advantage within a branch-

and-bound context. For instance, even without the issues of tolerances, when performing

column generation, we need to wait until convergence occurs to be able to obtain a valid

dual bound. However, it is often the case that the initial column generation iterations

are very cheap (as they are usually performed by fast heuristics) and the final ones are

more expensive. Therefore, if we can avoid the final column generation iterations, we

would be able to save some time. In particular, if we compute the dual bound proposed in
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Propositions 1-5 and it tells us that the current node can be pruned, we can exit early; we

do not need to run column generation until full convergence.

Furthermore, when the coefficients of the objective function are integral, the LP objective

value can be safely rounded up to the closest integer. When both the safe (corrected)

objective value and the unsafe (suboptimal) objective value round up to the same integer,

column generation can also be safely interrupted.

Note that we could even stop the procedure at any earlier point with a valid (yet weaker)

bound, in order to compute branch-and-bound nodes faster, at the risk of evaluating more

nodes. However, this would require additional fine tuning of our branch-and-cut-and-price

framework, and is beyond the scope of this paper.

4.3. Implementation details

The result of an operation in floating-point arithmetic may not be representable in the

chosen floating-point format, in our case 64-bits IEEE-754 double precision (IEEE (1985)).

Then, it is rounded to a nearby representable number. By default, it is rounded to the

nearest representable floating-point value, which could be smaller or larger. But in order

to perform safe arithmetic, we need to control the direction of the rounding. For example,

we obtain safe lower bounds by always rounding towards minus infinity. Since C99, the

standard C library provides a function fesetround() to change the rounding mode for the

current thread (ISO/IEC (1999)). However, the support for changing the rounding mode

is absent in LLVM (LLVM Bugzilla (2010), as of version 3.5.0), and experimental in GCC

(as of version 4.9.2). Specifically, the optimizer pass of GCC is not aware that the rounding

mode can be changed. It thus allows arithmetic operations to be reordered around calls

to fesetround() and other functions affecting floating-point arithmetic (GCC Bugzilla

(2008, 2006)). For instance, the following two snippets of code may (and, in our experience,

will) compile into the same assembly output:

fesetround(FE DOWNWARD);

x = 1.0 / a;

fesetround(FE TONEAREST);

y = 1.0 / a;

fesetround(FE DOWNWARD);

fesetround(FE TONEAREST);

x = 1.0 / a;

y = 1.0 / a;

To the best of our knowledge, there is no reliable way to impose an ordering on arithmetic

operations to the compiler. However, there exist a variety of tools to enforce an ordering

on memory access. For instance, the following code
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fesetround(FE DOWNWARD);

compute x and y();

fesetround(FE TONEAREST);

behaves as expected as long as the function compute x and y() is defined in a different

compilation unit (thus does not risk being inlined). Indeed, the compiler must preserve the

call order, in case compute x and y() accesses memory that depends on the side effects

of fesetround(FE DOWNWARD), or in case fesetround(FE TONEAREST) has a dependency

on the side effects of compute x and y(). Since this method introduces the inconvenient

need for having related code spread over different files, we describe several alternative

workarounds in Appendix A.

5. Computational experiments

Our code is based on the existing CVRP solver developed in Fukasawa et al. (2006), to

which we added the safe bound computing methods described in Section 3. The only major

modification to the previous code concerns the dynamic programming procedure. As noted

in Section 4.1, we need dynamic programming to return exact results for an integer input.

Consequently, the dynamic programming code was rewritten to use standard 64-bit integers

in all computations. The linear programming problems are solved using CPLEX 12.6.

We present four different experiments. The first is intended to verify whether the new

implementation of a safe dynamic programming procedure introduces any performance

penalty. The second evaluates potential performance gains arising from the use of safe

bounds. The third compares safe bounds with their unsafe counterparts, and tests whether

unsafe or inefficient branching/pruning decisions were taken by the unsafe code. The fourth

compares the strength of the three different bounds developed in Section 3.

5.1. Performance of safe dynamic programming

The dynamic programming routine implements the method from Irnich and Villeneuve

(2006) for finding shortest q-routes, with elimination of short cycles. A traditional variant

of the code uses floating point numbers for edge costs, and a safe variant uses integers. Two

additional steps are necessary in its safe variant: conversion of the input edge costs from

floating-point into integers, and the conversion the output q-route lengths from integer

into floating-point values. In this section, we measure whether those conversions or the use

of integers in computations presents any overhead. Both variants are run on an Intel Core
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safe unsafe safe unsafe
Instance nBB cols time (s) nBB cols time (s) Instance nBB cols time (s) nBB cols time (s)
A-n32-k5 1 817 0.405 1 819 0.378 B-n43-k6 13 1611 26.625 12 1858 30.614
A-n33-k5 1 715 0.303 1 715 0.251 B-n44-k7 1 1552 0.965 1 1634 1.049
A-n33-k6 5 666 6.721 4 695 4.434 B-n45-k5 7 2609 103.405 4 2545 69.317
A-n34-k5 3 949 3.627 3 943 3.152 B-n45-k6 5 1828 15.819 4 1847 14.720
A-n36-k5 11 1379 38.002 7 1197 15.279 E-n13-k4 1 51 0.027 1 51 0.012
A-n37-k5 32 3199 116.026 6 1668 29.394 E-n22-k4 1 240 0.088 1 240 0.073
A-n37-k6 50 1420 58.441 76 2673 93.742 E-n23-k3 1 925 5.029 1 943 5.576
A-n38-k5 19 2432 62.683 18 2760 55.337 E-n30-k3 1 2668 2.773 1 2583 2.915
A-n39-k5 7 1627 18.813 7 1668 17.514 E-n31-k7 3 631 3.045 3 619 3.067
A-n39-k6 9 1643 19.781 9 1480 19.069 E-n33-k4 1 1556 3.602 1 1534 3.555
A-n44-k6 3 1136 7.678 3 1126 6.903 F-n45-k4 1 6421 47.302 1 5840 39.677
A-n45-k6 70 3837 293.958 55 3426 176.184 P-n16-k8 4 65 0.170 4 65 0.167
A-n45-k7 50 2300 94.880 72 3563 154.411 P-n19-k2 1 506 0.231 1 506 0.228
A-n46-k7 2 1531 5.600 2 1572 11.525 P-n20-k2 3 625 4.113 3 592 4.065
A-n48-k7 168 5803 549.395 25 1733 60.152 P-n21-k2 1 520 0.227 1 520 0.269
B-n31-k5 1 1013 0.448 1 1013 0.400 P-n22-k2 2 615 5.369 2 615 5.344
B-n34-k5 14 1471 34.509 14 1298 39.387 P-n22-k8 1 109 0.039 1 109 0.027
B-n35-k5 1 1593 0.635 1 1655 0.623 P-n23-k8 1 143 0.032 1 143 0.029
B-n38-k6 7 1303 19.619 7 1284 19.590 P-n40-k5 2 1300 9.234 2 1300 9.194
B-n39-k5 2 2099 10.955 1 1978 1.271 P-n45-k5 21 1939 105.038 26 2367 177.198
B-n41-k6 3 1513 11.111 3 1452 12.186

geom. mean 3.8 1051.1 5.008 3.4 1026.8 4.154

Table 1 Computing time for safe and unsafe DP

i5 3210M processor with 8Gb of memory. The compiler is GCC 4.9.2 and the OS kernel is

Linux 3.19.5. For this test, we use the same instances as Fukasawa et al. (2006), but limit

to problems with less than 50 clients. This decision was made for practical reasons: we

measure running times in this test, and running several instances in parallel would affect

the accuracy of the measurements.

The results are presented in Table 1. Columns cols and time represent the total number

of columns generated across all nodes of the BCP algorithm and the total running time,

for either the safe or the unsafe/traditional variant of the code. nBB is the number of

branch-and-bound nodes. The geometric means are reported for each column over all

instances in the table. For some instances, we observe large variations between the two

variants, both in number of columns generated and in running time. This is not surprising

since slightly different solution paths may induce branch-and-bound trees of widely varying

sizes. However, the numbers are very similar for most instances. In geometric mean, the

safe code lead to the generation of 1051.1 columns per instance, while the unsafe code

involved 1026.8 columns. The associated running times, also in geometric mean, are 5.008

seconds and 4.154 seconds, respectively. While it appears that the safe code is slightly

slower on average, the difference in computational cost is certainly not prohibitive.
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5.2. Safe bounds and column generation

The test in the previous section measures the compound effect of two differences between

the safe and unsafe variants of our code. On the one hand, the safe variant has some

overhead. On the other hand, as mentioned in Section 4.2, safe bounds let us interrupt

column generation earlier in some cases. The test in this section intends to determine the

effect of the latter. It is performed on the same computer and with the same instances as

the previous test, and its results are shown in Table 2.

Here, whenever we determine that column generation could be interrupted early (i.e.

before convergence), we start a timer and proceed until convergence is obtained. This way,

we obtain an estimation of how many columns and how much time would be spared by

interrupting column generation early. In Table 2, the number of such columns is indicated

in late cols, and the corresponding column generation time in late time. The total number

of columns generated overall is indicated in total cols (this includes those counted in late

cols) and total time gives the total running time. When late cols is zero (entry left

blank in Table 2), we can verify that total cols corresponds to safe cols in Table 1. The

running time may vary slightly, because the experiments were performed separately.

Note that this is only an estimation, since columns that are avoided by early interruption

may still be needed in later calls to the column generation procedure (for other nodes of

the branch-and-bound tree, or even for the same node when heuristic acceleration is used,

see Fukasawa et al. (2006)).

We observe that the early-exit strategy lets us avoid generating some columns in almost

all instances. But the computing time associated with generating those columns remains

marginal, around 1% for most instances. This is consistent with the observation that the

corresponding gains in the safe code are insufficient to compensate for the overhead, in

Table 1. However, Table 2 confirms that the technique is useful in practice, although not

much.

5.3. Safe bounds and unsafe bounds

The primary aim of this paper is to ensure that the pruning of branch-and-bound nodes

is performed safely, i.e. without any risk of improper pruning, and without the need for

arbitrary tolerances. We now examine the safe lower bounds that we obtain, in comparison

to the unsafe bounds previously used in the code.
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total late total late total late total late
Instance cols cols time (s) time (s) Instance cols cols time (s) time (s)
A-n32-k5 817 4 0.400 0.010 B-n43-k6 1611 336 26.322 0.932
A-n33-k5 715 0.301 B-n44-k7 1552 4 0.902 0.017
A-n33-k6 666 22 4.764 0.046 B-n45-k5 2609 145 93.644 0.601
A-n34-k5 949 22 3.662 0.072 B-n45-k6 1888 120 15.457 0.411
A-n36-k5 1610 48 46.791 0.189 E-n13-k4 51 0.024
A-n37-k5 1614 98 18.500 0.289 E-n22-k4 240 0.073
A-n37-k6 1391 383 56.109 0.963 E-n23-k3 925 5.042
A-n38-k5 2445 161 50.018 0.460 E-n30-k3 2668 35 2.777 0.111
A-n39-k5 1627 167 18.162 0.314 E-n31-k7 631 16 3.031 0.043
A-n39-k6 1643 81 18.605 0.237 E-n33-k4 1556 10 3.403 0.204
A-n44-k6 1136 24 7.160 0.099 F-n45-k4 6421 35 45.725 1.526
A-n45-k6 3091 367 229.066 1.771 P-n16-k8 65 0.121
A-n45-k7 2282 528 78.265 1.702 P-n19-k2 506 0.281
A-n46-k7 1531 29 5.408 0.097 P-n20-k2 625 27 4.015 0.044
A-n48-k7 5049 1465 416.991 6.209 P-n21-k2 520 0.205
B-n31-k5 1013 11 0.393 0.019 P-n22-k2 615 21 5.250 0.044
B-n34-k5 1484 189 34.382 0.470 P-n22-k8 109 0.028
B-n35-k5 1593 0.601 P-n23-k8 143 0.024
B-n38-k6 1428 212 23.984 0.521 P-n40-k5 1300 84 8.634 0.220
B-n39-k5 2099 46 10.816 0.120 P-n45-k5 1952 574 116.066 2.342
B-n41-k6 1513 39 10.731 0.135

Table 2 Early-exit in column generation

In order to obtain a fair comparison, for every branch-and-bound node, we first compute

a bound zu in floating-point arithmetic, then use the safe variant of the code to compute

a safe bound zs. For zu, as is standard practice, a small value ε is subtracted from the LP

bound computed in FP arithmetic, to account for FP rounding errors. For the safe bound,

we use the maximum (i.e. strongest) of the safe bounds developed in Propositions 1-5.

In Table 3, we count for each of zs and zu, in how many nodes the bound was stronger.

We break ties in favor of the unsafe bound since, as the safe bound incurs an overhead,

we want to understand when our method is strictly preferable. Therefore, the number

represented in the zs column represents the number of nodes for which zs > zu, and the

number in the zu column represents the number of nodes for which zs ≤ zu. The column

nBB denotes the total number of branch-and-bound nodes. In the first group of columns,

zu is computed using a threshold of ε = 10−6, the value used by Fukasawa et al. (2006).

In the second group of columns, zu is computed with ε= 10−9, in order to illustrate the

importance of the choice of ε in an unsafe code. In some cases, the difference between zs

and zu is large enough to result in different branching decisions being taken depending on

which is used as a bound. If that is the case with zs > zu, it means that the unsafe code

performed unnecessary branching. If it happens with zu ≥ zs, the unsafe code might have
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performed unsafe pruning, although it may also be explained by the safe bound being too

weak. The number of branch-and-bound nodes for which such event occurred is indicated

between parenthesis when it is not zero.

The test was run on a computer with 48 AMD Opteron 6176 processor cores and

256Gb of memory. The compiler is GCC 4.4.7 and the OS kernel is Linux 2.6.32. For

this test, we use all the instances from Fukasawa et al. (2006). Some instances did not

terminate within 500 hours: F-n135-k7.vrp, M-n200-k16.vrp, M-n200-k17.vrp, while

others exhaust the available memory: B-n50-k8.vrp, B-n64-k9.vrp, B-n78-k10.vrp,

E-n101-k8.vrp, M-n151-k12.vrp. Partial results are reported for those instances, on the

branch-and-bound nodes that were processed.

Our results indicate that zs is stronger than the zu in the overwhelming majority of the

nodes, despite being a safe bound. This is the case even when zu is computed with the

dangerously small tolerance ε= 10−9. However, in our tests, the difference between zs and

zu was never large enough to let the safe code prune nodes that the unsafe code could not

prune. It must be noted that the objective function of most instances is integer, or can

be made integer by multiplying it by a small power of ten. As a consequence, most LP

bounds can be rounded up before being compared to the incumbent solution, rendering

small errors harmless whenever the LP bound is far from an integral value.

On the other hand, with ε= 10−6, zu was rarely stronger than zs, and also never led to

the unsafe code performing dangerous pruning. It is thus unlikely that the optimality of

solutions reported in Fukasawa et al. (2006) is affected by FP errors. The conclusions differ

for ε= 10−9 however, with unsafe pruning occurring in four distinct instances (A-n60-k9,

B-n68-k9, B-n78-k10, M-n121-k7). This tends to validate the choice of 10−6 for ε.

5.4. Comparison of safe bounds

In this section, we compare the bound correctors developed in Section 3. We reuse the data

generated in the experiment of the previous section, but this time count for the number of

nodes in which each was the strongest. Table 4 shows such numbers. Again, nBB denotes

the total number of branch-and-bound nodes. We denote by zrho the bound resulting from

Proposition 3, by zsc the one from Proposition 1, and by zLag the one from Propositions 4

and 5. Whenever a bound is strictly stronger than the others for a number of nodes, that

number is indicated between parenthesis.
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ε= 10−6 ε= 10−9 ε= 10−6 ε= 10−9

Instance nBB zs zu zs zu Instance nBB zs zu zs zu
A-n32-k5 0 0 0 0 0 B-n68-k9 4428 4428 0 4345 (1)83
A-n33-k5 0 0 0 0 0 B-n78-k10 3449 3449 0 3185 (4)264
A-n33-k6 3 3 0 3 0 E-n101-k14 4331 4329 2 4247 84
A-n34-k5 4 4 0 4 0 E-n101-k8 3190 3177 13 3088 102
A-n36-k5 6 6 0 6 0 E-n13-k4 0 0 0 0 0
A-n37-k5 4 4 0 4 0 E-n22-k4 0 0 0 0 0
A-n37-k6 62 62 0 62 0 E-n23-k3 0 0 0 0 0
A-n38-k5 30 30 0 30 0 E-n30-k3 0 0 0 0 0
A-n39-k5 4 4 0 4 0 E-n31-k7 1 1 0 1 0
A-n39-k6 8 8 0 8 0 E-n33-k4 0 0 0 0 0
A-n44-k6 2 2 0 2 0 E-n51-k5 2 2 0 2 0
A-n45-k6 10 10 0 10 0 E-n76-k10 1726 1726 0 1693 33
A-n45-k7 59 59 0 59 0 E-n76-k14 4381 4381 0 4356 25
A-n46-k7 1 1 0 1 0 E-n76-k7 1093 1092 1 1089 4
A-n48-k7 165 165 0 160 5 E-n76-k8 311 311 0 301 10
A-n53-k7 9 9 0 9 0 F-n135-k7 3 2 1 2 1
A-n54-k7 45 45 0 44 1 F-n45-k4 0 0 0 0 0
A-n55-k9 9 9 0 9 0 F-n72-k4 14 14 0 12 2
A-n60-k9 615 615 0 600 (1)15 M-n101-k10 1 1 0 1 0
A-n61-k9 174 174 0 166 8 M-n121-k7 70 69 1 59 (2)11
A-n62-k8 85 85 0 83 2 M-n151-k12 585 582 3 307 278
A-n63-k10 377 377 0 370 7 M-n200-k16 58 58 0 6 52
A-n63-k9 1083 1083 0 1035 48 M-n200-k17 554 550 4 94 460
A-n64-k9 304 304 0 304 0 P-n101-k4 30 30 0 29 1
A-n65-k9 10 10 0 10 0 P-n16-k8 3 3 0 3 0
A-n69-k9 517 516 1 513 4 P-n19-k2 0 0 0 0 0
A-n80-k10 84 84 0 80 4 P-n20-k2 2 2 0 2 0
B-n31-k5 0 0 0 0 0 P-n21-k2 0 0 0 0 0
B-n34-k5 10 10 0 10 0 P-n22-k2 1 1 0 1 0
B-n35-k5 0 0 0 0 0 P-n22-k8 0 0 0 0 0
B-n38-k6 3 3 0 3 0 P-n23-k8 0 0 0 0 0
B-n39-k5 0 0 0 0 0 P-n40-k5 1 1 0 1 0
B-n41-k6 2 2 0 2 0 P-n45-k5 23 23 0 23 0
B-n43-k6 12 12 0 12 0 P-n50-k10 172 172 0 172 0
B-n44-k7 0 0 0 0 0 P-n50-k7 4 4 0 4 0
B-n45-k5 6 6 0 6 0 P-n50-k8 264 264 0 264 0
B-n45-k6 2 2 0 2 0 P-n51-k10 22 22 0 22 0
B-n50-k7 1 1 0 1 0 P-n55-k10 950 950 0 945 5
B-n50-k8 10969 10968 1 10774 195 P-n55-k15 697 697 0 690 7
B-n51-k7 214 214 0 214 0 P-n55-k7 1110 1110 0 1104 6
B-n52-k7 8 8 0 8 0 P-n55-k8 104 104 0 104 0
B-n56-k7 3 3 0 3 0 P-n60-k10 40 40 0 40 0
B-n57-k7 11 11 0 10 1 P-n60-k15 20 20 0 20 0
B-n57-k9 7 7 0 7 0 P-n65-k10 23 23 0 23 0
B-n63-k10 14900 14895 5 14785 115 P-n70-k10 1475 1475 0 1447 28
B-n64-k9 7998 7998 0 151 7847 P-n76-k4 85 84 1 77 8
B-n66-k9 88 88 0 85 3 P-n76-k5 1670 1665 5 1645 25
B-n67-k10 142 142 0 135 7

Table 3 Comparison of safe and unsafe bounds
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As shown in Table 4, zsc was never strictly stronger than the other safe bounds in our

experiments. The strongest bound was most often zrho, but zLag was strictly stronger than

zrho in many cases. It is thus clear that none of zLag and zrho dominates the other. They

are both useful and complement each other in a safe code. Note, however, that in our

experiments, it never happened that one safe bound allowed a pruning that would have

been missed by another. This situation is similar to that in Section 5.3, and it can also be

explained in part by the fact that the objective function of most instances is integer.

6. Conclusion

We propose several methods to obtain safe lower bounds for LP relaxations of the Capac-

itated Vehicle Routing Problem (CVRP). We then describe how these methods can be

exploited in practice. In particular, since we solve CVRP instances by column generation,

we describe a safe implementation of the dynamic programming procedure employed in

the pricing step. Finally, we perform computations to compare the resulting bounds to

those traditionally computed with floating-point arithmetic and arbitrary tolerances. The

first method is based on a scaling approach proposed by Held et al. (2012) for graph color-

ing problems. However, the resulting bound is weak in practice. Three other methods are

derived from ideas by Applegate et al. (2006) for the Travelling Salesman Problem, and

we adapt them to accommodate for column generation in the CVRP. The last method is

simply an alternate derivation of one of the bounds obtained previously, and is based on a

specific Lagrangian relaxation of the CVRP formulation.

In practice, the bounds obtained with our methods are in most cases stronger than those

computed with traditional floating-point arithmetic, in addition to being safe. Moreover,

they can be computed even when column generation has not converged yet. As a result,

we can interrupt column generation earlier in some cases. In our tests, these stronger safe

bounds did not lead to additional pruning, and the early interruption of column generation

did not yield significant gains. However, we obtained safely optimal solutions, while only

incurring a small overhead.
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zbest = zbest =
Instance nBB zrho zsc zLag Instance nBB zrho zsc zLag

A-n32-k5 0 0 0 0 B-n68-k9 4428 (3806) 3857 0 (571) 622
A-n33-k5 0 0 0 0 B-n78-k10 3449 (2991) 3000 0 (449) 458
A-n33-k6 3 (1) 2 0 (1) 2 E-n101-k14 4331 (4152) 4162 0 (169) 179
A-n34-k5 4 (1) 1 0 (3) 3 E-n101-k8 3190 (2077) 2080 1 (1110) 1113
A-n36-k5 6 (3) 4 0 (2) 3 E-n13-k4 0 0 0 0
A-n37-k5 4 (2) 2 0 (2) 2 E-n22-k4 0 0 0 0
A-n37-k6 62 (29) 36 0 (26) 33 E-n23-k3 0 0 0 0
A-n38-k5 30 (16) 20 0 (10) 14 E-n30-k3 0 0 0 0
A-n39-k5 4 2 0 (2) 4 E-n31-k7 1 (1) 1 0 0
A-n39-k6 8 (5) 7 0 (1) 3 E-n33-k4 0 0 0 0
A-n44-k6 2 (1) 1 0 (1) 1 E-n51-k5 2 1 0 (1) 2
A-n45-k6 10 (6) 7 0 (3) 4 E-n76-k10 1726 (1396) 1412 0 (314) 330
A-n45-k7 59 (31) 37 0 (22) 28 E-n76-k14 4381 (4143) 4152 0 (229) 238
A-n46-k7 1 (1) 1 0 0 E-n76-k7 1093 (705) 719 0 (374) 388
A-n48-k7 165 (145) 151 0 (14) 20 E-n76-k8 311 (222) 234 0 (77) 89
A-n53-k7 9 (5) 6 0 (3) 4 F-n135-k7 3 (1) 1 0 (2) 2
A-n54-k7 45 (31) 40 1 (5) 14 F-n45-k4 0 0 0 0
A-n55-k9 9 (4) 7 0 (2) 5 F-n72-k4 14 0 0 (14) 14
A-n60-k9 615 (488) 493 0 (122) 127 M-n101-k10 1 (1) 1 0 0
A-n61-k9 174 (145) 152 0 (22) 29 M-n121-k7 70 (33) 35 0 (35) 37
A-n62-k8 85 (64) 69 0 (16) 21 M-n151-k12 585 (503) 504 0 (81) 82
A-n63-k10 377 (299) 301 0 (76) 78 M-n200-k16 58 (54) 54 0 (4) 4
A-n63-k9 1083 (937) 941 0 (142) 146 M-n200-k17 554 (538) 538 0 (16) 16
A-n64-k9 304 (249) 255 1 (49) 55 P-n101-k4 30 (2) 2 0 (28) 28
A-n65-k9 10 (8) 9 0 (1) 2 P-n16-k8 3 (1) 3 0 2
A-n69-k9 517 (432) 443 0 (74) 85 P-n19-k2 0 0 0 0
A-n80-k10 84 (75) 78 0 (6) 9 P-n20-k2 2 1 0 (1) 2
B-n31-k5 0 0 0 0 P-n21-k2 0 0 0 0
B-n34-k5 10 (3) 3 0 (7) 7 P-n22-k2 1 0 0 (1) 1
B-n35-k5 0 0 0 0 P-n22-k8 0 0 0 0
B-n38-k6 3 (2) 2 0 (1) 1 P-n23-k8 0 0 0 0
B-n39-k5 0 0 0 0 P-n40-k5 1 0 0 (1) 1
B-n41-k6 2 (2) 2 0 0 P-n45-k5 23 (15) 15 0 (8) 8
B-n43-k6 12 (1) 4 0 (8) 11 P-n50-k10 172 (151) 164 0 (8) 21
B-n44-k7 0 0 0 0 P-n50-k7 4 (2) 3 0 (1) 2
B-n45-k5 6 (2) 2 0 (4) 4 P-n50-k8 264 (231) 242 1 (22) 33
B-n45-k6 2 1 0 (1) 2 P-n51-k10 22 (20) 20 0 (2) 2
B-n50-k7 1 0 0 (1) 1 P-n55-k10 950 (889) 916 0 (34) 61
B-n50-k8 10969 (7821) 7898 1 (3071) 3148 P-n55-k15 697 (685) 691 0 (6) 12
B-n51-k7 214 (137) 144 0 (70) 77 P-n55-k7 1110 (869) 900 0 (210) 241
B-n52-k7 8 (4) 5 0 (3) 4 P-n55-k8 104 (83) 95 0 (9) 21
B-n56-k7 3 (3) 3 0 0 P-n60-k10 40 (30) 36 0 (4) 10
B-n57-k7 11 (8) 8 0 (3) 3 P-n60-k15 20 (12) 18 0 (2) 8
B-n57-k9 7 (7) 7 0 0 P-n65-k10 23 (16) 19 0 (4) 7
B-n63-k10 14900 (13908) 13977 0 (923) 992 P-n70-k10 1475 (1346) 1364 0 (111) 129
B-n64-k9 7998 (7055) 7061 0 (937) 943 P-n76-k4 85 (13) 14 0 (71) 72
B-n66-k9 88 (76) 76 0 (12) 12 P-n76-k5 1670 (669) 686 1 (984) 1001
B-n67-k10 142 (115) 118 0 (24) 27

Table 4 Strongest safe bounds
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Appendix A: Implementation details for setting rounding mode

Technically, the workaround developed in Section 4.3 amounts to introducing a compiler memory barrier

between the call to fesetround() and the subsequent arithmetic operations to enforce a specific ordering. In

C, function calls act as compiler memory barriers as long as the compiler cannot see the function definition.

They present two advantages over manually inserting a memory barrier (e.g. with asm volatile("" : : :

"memory"); in GCC). Firstly, function calls are portable and specified by the standard. Secondly, memory

barriers have no impact on local variables (even if they are stored on the stack) unless a pointer to them is
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taken previously in the execution flow. Implementing arithmetic operations in a separate function ensures

that no local variables could escape our memory ordering constraints.

Several alternatives to a function call are possible.

One may create a no-operation function touch(double *) defined outside of the compilation unit, to which

we pass pointers to the local variables involved. Equivalently, we can create a wrapper fesetround wrapper()

for fesetround() that takes a variable number of arguments, to which we pass those same pointers.

void touch(double *v)
{
}

int fesetround wrapper(int mode, ...)
{

return(fesetround(mode));
}

In both cases, the function does not modify its arguments, but this method forces the compiler to store

them to memory. Since the call to fesetround() acts as a compiler memory barrier, it produces the desired

outcome. In the case of the wrapper function, the overhead could be limited to the storage of local variables

to memory by inlining the code of fesetround() in the wrapper function. Examples follow.

fesetround(FE DOWNWARD);
touch(&a)
x = 1.0 / a;
touch(&x)
fesetround(FE TONEAREST);
touch(&a)
y = 1.0 / a;

fesetround wrapper(FE DOWNWARD, &a);
x = 1.0 / a;
fesetround wrapper(FE TONEAREST, &x, &a);
y = 1.0 / a;

A second possibility is to use an identity function self(double) which returns its argument. In this case,

local variables may not need to be stored to memory if the ABI permits argument passing through registers

(as is the case in x86 64), but the function calls to self() cannot be avoided.

fesetround(FE DOWNWARD);
x = self(1.0 / self(a));
fesetround(FE TONEAREST);
y = self(1.0 / self(a));

Finally we can create a safe double class and define all its operator methods in a separate compilation

unit. This approach has most overhead (constructors and destructors will be called as well as operator

methods), but it requires less caution from its user.

safe double b = a;
fesetround(FE DOWNWARD);
safe double x = 1.0 / b;
fesetround(FE TONEAREST);
safe double y = 1.0 / b;

It is not perfect however, as care must be taken with implicit casts. In the following example indeed,

fesetround(FE DOWNWARD);
safe double x = 1.0 / (double)a;

the division may be performed before the call to fesetround(), since only the result of 1.0 / (double)a

is cast to safe double.


