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Abstract

This thesis focuses on the use of cutting-plane techniques to improve general-purpose mixed-integer linear

programming solvers.

The first topic covered here is a fast separation method for two-row cuts. Two-row cuts are intersection

cuts from two rows of a simplex tableau describing the LP relaxation of the problem. These types of

cuts recently garnered a lot of attention from the scientific community following a paper by Andersen,

Louveaux, Weismantel and Wolsey describing the facets of the underlying two-row model and providing

an intuitive geometric classification the derived cuts. The specificity of the approach adopted here is that

it does not rely on an “infinite relaxation” point of view and generate intersection cuts from fixed lattice-

free sets. Instead, given a fractional point x∗, it aims at always finding a most violated facet-defining

inequality for the two-row model. This can be achieved by optimizing over the polar set of the integer hull

of the model. A fast way of performing this is provided, by means of a polyhedron that is equivalent to the

polar for that purpose, but has a more compact representation. Moreover, a row-generation algorithm

is developed in order to avoid the costly computations of integer hulls of two-dimensional cones. An

implementation of the resulting algorithm performs separation of two-row cuts in a few milliseconds on

average, on the standard MIPLIB 3 and 2003 testsets.

While this two-row separator is quick, the measurements of the computational usefulness of the cuts do

not yield satisfactory results. Since all the cuts generated are facet-defining, this might suggest that the

underlying two-row models are too weak. This observation prompted the second part of this thesis, an

attempt to evaluate the strength of various multi-row relaxations, on small instances, using a generic

separator. To that end, a separator is developed, which is able to compute facet-defining inequalities

from arbitrary (yet reasonably small) mixed-integer sets. A row-generation approach is again adopted,

but this time the slave part consists in the resolution of a mixed-integer problem instead of a closed-form

oracle. Some interesting computational tricks are developed, in order to speedup the inherently hard

computations.

The first topic, the separation of two-row cuts, is joint work with my advisor Prof. Quentin Louveaux.

The second, the separation of facets from arbitrary MIPs, is joint work with Prof. Quentin Louveaux and

Prof. Domenico Salvagnin from the Università degli Studi di Padova.
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Chapter 1

Introduction

Mathematical programming is a subfield of applied mathematics that deals with the solution of optimiza-

tion problems. In particular, we focus here on discrete optimization problems, i.e. problems where some

variables are constrained to take integer values. This covers a very broad class of problems with a wide

range of applications, particularly in the field of operations research. Some special subclasses of discrete

problems have enjoyed sizable fame both in terms of detailed theoretical study, and in terms of successful

applications. Let us cite the traveling salesman problem, set packing/cover/partitioning problems (and

their graph derivatives matching, vertex packing, maximum clique, node covering, etc.), knapsack, Steiner

tree, facility location, lot-sizing and bin packing, among plenty of others.

To better illustrate the concept of discrete optimization, let us start with an example that is tightly linked

to real-life applications.

Problem 1 (Boolean logic minimization). Let f be a Boolean function of n Boolean variables x1, . . . , xn,

given by its truth table. A disjunctive normal form (DNF) is a sum-of-products formula where variables

may appear complemented, e.g. x1x̄2 + x1x̄3x4 + x2x̄5. Find the lightest DNF describing f(x), if the

weight is given by the sum of the weights of its product terms, and the weight w(g) of any product term

g is given.

One straightforward way to tackle Problem 1 is to first list all implicants of f . An implicant of f is a

product-term g(x) that is true only if f(x) is true, e.g. x2x̄5. In other words, “g is an implicant of f”

means that “g(x) is true” implies “f(x) is true”. We denote by G the set of all such implicants, which

has cardinality at most 3n, and by G(x) the subset of them that are true for x, i.e. G(x) := {g ∈ G :

g(x) is true}. We can now look for the lightest subset of G such that at least one of its elements is true

whenever f(x) is true.

min
∑
g∈G

zgw(g)

s.t.
∑

g∈G(x)

zg ≥ 1 for all x : f(x) is true

z ∈ {0, 1}|G|

(1.1)

Letting z∗ be an optimal solution to (1.1), a solution to the problem is given by taking in the sum every

implicant g such that z∗g = 1.
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The process of building (1.1) is known as modeling, and (1.1) is called a formulation of Problem 1. There

are three main approaches to solving this formulation.

First, one can study the theory of the problem in depth and design a custom algorithm for solving it

from scratch. In particular, (1.1) is known as a set covering formulation, and one can find a substantial

body of theory on how to solve it approximately or exactly. As a side note, this provides strong clues

suggesting that Problem 1 is hard, as set covering is one of Karp’s 21 NP-complete problems, while the

size of the formulation (1.1) is already exponential in n.

A second possibility is to rewrite the formulation (1.1) using constraint programming (CP) techniques.

Constraint programming lets us describe a feasible region using an extensive set of high-level constraints

such as alldifferent, atmost or element. For example, a constraint alldifferent(y1, y2, y3) means

that the three variables y1, y2 and y3 must take distinct (typically integer) values. The description

is then fed into a CP solver which essentially searches for solutions by enumeration on the space of the

variables. Each type of CP constraint comes with dedicated algorithms for efficiently pruning parts of the

search space, in order to speedup the enumeration. Because of this approach, constraint programming

is especially suited for highly combinatorial feasibility problems. Indeed, although any optimization

problem can be reduced to a feasibility problem in polynomial time through dichotomy on the objective

function value, in practice, obtaining optimality guarantees is often a tedious task for CP solvers. Note

that from a computer science perspective, the CP description can be seen as the actual implementation of

the solution-finding algorithm, in a declarative language that is then interpreted by the CP solver. One

important characteristic of constraint programming is that plenty of different CP formulations can be

valid for a single problem, and writing an efficient one requires some insight into the problem structure,

although less than with an ad-hoc method as exposed previously. We will not delve deeper into the

constraint programming paradigm as it extends far beyond the scope of this text, instead referring the

interested reader to [5, 70, 62] for a comprehensive introduction.

The third approach consists in feeding (1.1) directly into a general-purpose solver, whose mission is to

find an optimal solution. More precisely, one passes only the data A, b, c, l, u and J to a solver that

solves a generic-form problem such as

min cTx

s.t. A x ≥ b
l ≤ x ≤ u
x ∈ Rn

xj ∈ Z ∀j ∈ J.

(1.2)

In our case, J = {1, . . . , |G|}, l = (0, . . . , 0) and u = (1, . . . , 1), i.e. all variables are integer constrained

and in the range [0, 1]; c =
(
w(G1), . . . , w(G|G|)

)T
gives the costs associated to the variables, each variable

representing one implicant, b = (1, . . . , 1)T and A is the node-node adjacency matrix of a bipartite graph

(X,G). The node set X contains one node for every x such that f(x) is true, and the node set G contains

a node for every implicant, with an edge between an implicant g and an input x if g(x) is true.

This third approach is often referred to as black-box optimization, because no information about the

structure of the problem is available to the solver, apart from A, b, c, l, u and J . For example, the fact
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that all variables are binary is only represented by the conjunction of the integrality of the variables, the

lower bound 0 and the upper bound 1. Less trivially, the simple fact that

for every x such that f(x) is true, at least one selected implicant must be true

is represented by a complex combination of constraints, namely, (a) all variables are binary and (b),

letting ai be a row of A, aTi x ≥ 1 where ai is a binary vector representing G(x).

At first glance, the black-box approach may seem too general to be useful or efficient. Yet on a significant

portion of common instances, it nevertheless outperforms other approaches at finding optimal solutions.

This is mostly due to the particular methods adopted by black-box solvers, based on solving easier

relaxations of the feasible region. Roughly, if such relaxations are “meaningful” for the original problem,

then the black-box approach has a chance to be successful. Also, the lack of a deep analysis of the

problem (and the efficient customized techniques it can yield) is often offset by the raw amount of

effort that is put into perfecting the efficiency of general-purpose solvers. Moreover, black-box solvers

have grown increasingly capable of exploiting (and sometimes even detecting) some forms of problem

structure, bridging the gap with tailor-made algorithms.

The modeling approach adopted to write the formulation (1.1) is central to the field of mathematical

programming. The covering problem is a typical subject studied in the subfield of discrete optimization,

which enjoys a privileged position at the crossroads of numerical analysis, polyhedral theory, and graph

theory.

This thesis covers specific techniques that aim at improving the performances of general-purpose black-

box solvers for problems in a generic form such as (1.2). These techniques are known as cutting planes

methods.

The next few sections serve the dual purpose of laying out some historical context, while formally intro-

ducing the basic theory needed for this discussion.

1.1 Optimization

Optimization problems deal with minimizing or maximizing a function of many variables, subject to

many constraints on these variables. Let f : Rn → R and gi : Rn → R be scalar functions of the variable

vector x for i ∈ {1, . . . ,m}, a general form of an optimization problem is

max f(x)

s.t. g1(x) ≥ 0

. . .

gm(x) ≥ 0

x ∈ Rn.

(1.3)

The set P := {x ∈ Rn : gi(x) ≥ 0, ∀i} is called the feasible region of the problem, and the function f(x) its

objective function. A feasible solution x̄ of (1.3) is an element of its feasible region P . A feasible solution

x∗ ∈ P is optimal if for all x̄ ∈ P , f(x̄) ≤ f(x∗). The optimal set P ∗ := {x ∈ P : f(x̄) ≤ f(x), ∀x̄ ∈ P}
denotes the set of all optimal solutions. When P ∗ is a singleton, the optimal solution is said to be unique.
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The problem (1.3) is feasible if P 6= ∅, infeasible otherwise. A feasible problem is called unbounded when,

for any K > 0, there exists x̄ ∈ P such that f(x̄) > K, which can be roughly interpreted as the “optimal”

objective function value being +∞.

It is important to note that, unless further hypotheses are made, optimization problems are, in general,

unsolvable [68]. Indeed, one can easily construct an optimization problem of the form (1.3) that is

arbitrarily hard to solve. This leads us to consider special subsets of the problems of the form (1.3) that

are tractable computationally and for which one can prove complexity bounds.

1.2 Linear Programming

A linear optimization problem is one in which both the objective function and the constraints are linear

in the variables. It can thus be written in matrix form as

max cTx

s.t. A x ≥ b
x ∈ Rn

(1.4)

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. For practical reasons, we will further assume throughout this text

that all variables and coefficients are rational, i.e. xj , cj , bi, Aij ∈ Q, for all i, j.

One very important property of the feasible region P := {x ∈ Rn : Ax ≥ b} of (1.4) is that it is a

polyhedron in Rn, hence the strong ties between linear optimization and polyhedral theory. Before we

delve into more detail (see Section 1.5 for the basics of polyhedral theory), we can already state one

interesting and fairly intuitive consequence of these ties: If the polyhedron P has one or more vertices,

the optimal set P ∗ of (1.4) contains at least one such vertex. In other words, there exists an optimal

solution to (1.4) that is a vertex of its feasible region (note that through a simple reformulation, we can

assume without loss of generality that P ⊆ Rn+, ensuring that P has at least one vertex, unless it is

empty). We can thus restrict ourselves to these vertices in the search for max{cTx : x ∈ P}, and this idea

is put into practice in the simplex method [32] which, albeit having exponential worst-case complexity,

is still one of the fastest algorithms for solving linear optimization problems.

Moreover, linear optimization admits algorithms of weakly polynomial time complexity [56], i.e. al-

gorithms which find an approximation x̄ of an optimal solution x∗ such that ||f(x̄) − f(x∗)|| ≤ ε in

O(log( 1
ε ) p(nE)) iterations, where p(nE) is a polynomial in the encoding length nE of the problem [68].

The foundations of linear optimization mostly originate from polyhedral theory, and were laid out in the

late 19th century by Farkas and Minkowski (see, e.g., [40, 65]). In its contemporary form however, the

linear optimization problem was formulated by Kantorovich in the 1939 paper “Mathematical methods in

the organization and planning of production” [54]. The term “linear programming” spawns from this view

of optimization as a tool for production and planning. The simplex method was published by Dantzig in

1951 [32] and stayed the most efficient method for solving linear problems, both in theory and in practice,

until the late 1970’s. The first polynomial-time algorithm for linear programming, based on the ellipsoid

method, was published in 1979 by Khachiyan [56], and was quickly followed by the first practically

competitive polynomial-time method by Karmarkar [55] in 1984. Nowadays, there is no algorithm for
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linear programming that clearly outperforms all others, even on classes of problems of a given size. Which

algorithm is faster for solving a linear problem is thus highly dependent on the particular instance, and

fully reliable methods for predicting it have not been developed yet [24]. We refer the reader to Todd [72]

and Schrijver [71] for an excellent overview of the history and the current state of linear programming.

1.3 Mixed-Integer Linear Programming

Mixed-integer linear optimization is the main object of this thesis. Mixed-integer problems (MIPs) are a

superset of linear optimization problems, in which we admit, in addition to linear constraints, integrality

constraints on some or all of the variables. A general form is given by

max cTx

s.t. A x ≥ b
x ∈ Rn

xj ∈ Z ∀j ∈ J

(1.5)

where J ⊆ {1, . . . , n}. It is called a pure integer problem when J = {1, . . . , n}. Note that there is no

known polynomial-time algorithm for solving (1.5). Mixed-integer programming is NP-hard in general,

and plenty of special cases have been proven to be NP-complete (see e.g. [74]).

Note that the feasible region P := {x ∈ Rn : Ax ≥ b and xj ∈ Z for all j ∈ J} is no longer a polyhedron in

this case, nor even a convex set. We can however consider the convex hull conv(P ) of the feasible solutions

which, by Meyer’s theorem [64], is a polyhedron. Obviously, P ⊆ conv(P ) and the vertices of conv(P )

belong to P . Therefore, if we possess a description of conv(P ), e.g. conv(P ) = {x ∈ Rn : Āx ≥ b̄}, then

the problem reduces to linear programming. Indeed, assuming as before that P ⊆ Rn+, there exists an

optimal solution x∗ to min{cTx : x ∈ conv(P )} that is a vertex of conv(P ), and thus belongs to P . Since

x∗ is an optimal solution over conv(P ) which is a relaxation of P , it is also an optimal solution over P .

Unfortunately, computing Ā and b̄ from A and b is also NP-hard in general.

Another set of interest in the context of MIPs is the linear relaxation PLP of P , which is defined by

PLP := {x ∈ Rn : Ax ≥ b} and consists in dropping the integrality constraints from P . As the term

relaxation indicates, P ⊆ PLP (more precisely, P = PLP ∩ {x ∈ Rn : xj ∈ Z for all j ∈ J}), and we can

easily show that P ⊆ conv(P ) ⊆ PLP .

The two fundamental approaches to solving (1.5) are cutting planes and enumeration. Cutting planes

are inequalities of the form αTx ≥ α0 that are valid for P , i.e. αTx ≥ α0 is verified for every x ∈ P .

The inequality is redundant if it is also verified for every x ∈ PLP . Otherwise, it cuts off part of the

polyhedron PLP (hence the term), and we can construct P
(1)
LP := PLP ∩ {x ∈ Rn : αTx ≥ α}. By

linearity, any inequality that is valid for P is also valid for conv(P ), hence PLP ⊃ P
(1)
LP ⊇ conv(P ).

Letting P (1) := P
(1)
LP ∩ {x ∈ Rn : xj ∈ Z for all j ∈ J}, it is straightforward to observe that P (1) = P ,

hence P (1) can be used as a new formulation of P . Iterating the process of finding a non-redundant valid

inequality, we obtain a sequence PLP ⊃ P
(1)
LP ⊃ P

(2)
LP ⊃ . . . ⊇ conv(P ). We will see in Section 1.6 that

under some assumptions, specific families of valid inequalities yield sequences {PLP , P (1)
LP , . . . , P

(k)
LP } such

that P
(k)
LP = conv(P ) for some finite integer k. This method of iteratively approaching conv(P ) is called a

pure cutting-plane algorithm. Note that the property of non-redundancy, which yields the strict inclusion
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relationship P
(i)
LP ⊃ P

(i+1)
LP , can be enforced by considering at step (i) a valid inequality that is violated

by one specific point x̃ of P
(i)
LP . Such an inequality is said to separate x̃, and we will see in Section 1.6

that it is common for cutting-plane generation techniques to guarantee that the cuts separate, at least,

an optimal solution of the current LP relaxation min{cTx : x ∈ P (i)
LP }.

The most typical example of the enumeration approach, is the branch and bound algorithm, which

proceeds as follows. Let x̃ be an optimal solution of min{cTx : x ∈ PLP }. If x̃j ∈ Z for all j ∈ J ,

then it is also an optimal solution to (1.5), and the algorithm terminates. Otherwise, assume without

loss of generality that x̃1 /∈ Z and 1 ∈ J . We know that for x to be in P , either x1 ≤ bx̃1c or x1 ≥ dx̃1e.
We thus create two subproblems whose feasible regions are P l := PLP ∩ {x ∈ Rn : x1 ≤ bx̃1c} and

P r := PLP ∩ {x ∈ Rn : x1 ≥ dx̃1e}, respectively. This operation is called branching on x1. We now have

the relation PLP ⊃ P l ∪P r ⊇ P , and look for an optimal solution to (1.5) in both P l and P r. This leads

us to explore a so-called branch and bound tree, creating for example P lr and P ll if an optimal solution

x̃l to min{cTx : x ∈ P l} has x̃l2 /∈ Z while 2 ∈ J . The recursive subdivision of problems in the branch and

bound tree stops (i.e. we reach leaf nodes) when one of three conditions is met. First, if a subproblem is

infeasible, its feasible region is empty and we do not need to further consider that node. Secondly, if an

optimal solution x̃ of a subproblem has x̃j ∈ Z for all j ∈ J , then it is feasible for (1.5) and no further

branching is necessary. If it is the first such solution found, it becomes the so-called incumbent solution

x∗. Otherwise, it is compared to the incumbent solution, whose place it takes if it has a better objective

function value, i.e. if cT x̃ > cTx∗. At termination of the algorithm, when all nodes of the tree have been

explored, the incumbent solution is proven optimal for the problem. Thirdly, if the objective function

value of an optimal solution x̃ to the subproblem is no better than that of the incumbent solution, i.e.

if cT x̃ ≤ cTx∗, then the node is discarded. In that case indeed, as any further branching amounts to

restricting the feasible region of the current node, the optimal objective function value of any problem

in the subtree of that node can only reach cT x̃, at best. Occurrences of this third condition and the

consequent action of discarding the corresponding node is commonly referred to as pruning of the branch

and bound tree. In practice, pruning is extremely important for the efficiency of branch and bound,

which motivates our search for good incumbents (with high cTx∗) and strong LP relaxations (yielding

low cT x̃).

The pure cutting plane approach was first devised by Gomory in 1960 [46, 47, 48], along with a type

of cuts that ensures finiteness of the algorithm in some important specific cases, now known as the

Gomory fractional cuts. Despite the theoretical elegance of the approach, initial implementations of pure

cutting planes techniques were plagued with numerical difficulties. As a consequence, general-purpose

cutting planes such as the Gomory cuts were widely believed through the seventies and eighties to be

hopelessly useless for solving MIPs. Only custom-tailored families of cutting planes were used successfully

for solving particular problems such as the traveling salesman problem, exploiting knowledge about the

special polyhedral structure of the problem.

The branch and bound method on the other hand was developed also in 1960 by Land and Doig [57],

and has since been the basic method of choice for solving large-scale general MIPs. In the mid-nineties

however, Balas, Ceria and Cornuéjols [9] achieved tremendous improvements to the method by incorpo-

rating Gomory cutting planes in a branch and bound framework. Their approach differed from previous
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attempts in two main aspects. First, instead of adding one cut at a time, they included all the easily com-

putable Gomory cuts to the formulation altogether. Secondly they switched to branch and bound after

few pure cutting plane iterations, thus limiting the adverse effect of floating-point computations. In this

perspective, cutting planes serve the purpose of strengthening the initial linear programming relaxation,

before branch and bound is initiated. Further refinements were later brought to this hybrid approach,

called branch and cut, such as the use of cuts within the branch and bound tree [10]. These discoveries

have led to a renewed interest in general-purpose cutting planes with, as a broad objective, generating

different cuts, in addition to Gomory cuts, to further strengthen the linear programming relaxations. We

refer to [30] for an interesting read on this line of research and its recent history.

1.4 Subject of this thesis

The topics of this thesis are about the generation of cutting planes, with the objective of further improving

the performances of branch and cut solvers. All state-of-the-art solvers already incorporate a number

of cutting-plane generation techniques, such as Gomory’s method. In practice, the most effective ones

are computed in closed-form from a single row (i.e. one constraint) of the formulation, considering also

the integrality constraints on the variables. This thesis explores more complex approaches (in particular

multi-row approaches) that yield stronger inequalities, but present several important limitations. The

increased complexity leads to slower cut generation and, more importantly, introduces new parameters

that are not yet fully understood. Contrary to what the intuition suggests, these additional degrees of

freedom pose a challenge, both from a theoretical and a practical standpoint. Indeed, while the use of

cutting planes may decrease the size of a branch and bound tree by making the LP formulation stronger,

it also increases the computational effort required to solve each node of the tree, as the LP formulation

also grows bigger in terms of number of variables and constraints. This means that we can not just

add cuts massively, but instead need to choose the right parameters and pick the cuts carefully. So far,

computational experience has shown that simple cuts like Gomory’s mixed-integer (GMI) cuts provide

a good compromise. GMIs are computed with a closed-form formula, and have acceptable numerical

properties. Furthermore, they are effective at reducing the size of the enumeration tree, and only one cut

can be computed from any given linear constraint.

However, if multi-row cuts have not proved useful in practice yet, this may be due to our limited un-

derstanding about how to apply them. In this thesis, we tackle the problem in two ways. The first is

straightforward, as we develop a fast generator for multi-row (specifically, two-row) cuts. The second is to

implement a slow but general-purpose computational tool that we use to test the efficacy of any cut gen-

erating framework, on small benchmark MIP instances. Our objective is to predict, extrapolating from

our testset, which frameworks are computationally promising, before we try to develop fast algorithms

for them.

In order to describe more specifically the issues that are tackled here, we need to provide some theoretical

context. In the next section, we review very briefly a few elements of polyhedral theory that are necessary

for our developments. Then, in Section 1.6 we describe two simple cut generation frameworks, and in

Section 1.7, we introduce a central concept in this thesis, the intersection cut.
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Figure 1.1: conv({xi}) Figure 1.2: cone({r1, r2, r3})

Figure 1.3: aff({x5, x6}).
Figure 1.4: lin({v1, v2}).

1.5 Polyhedral theory

While this text assumes some basic familiarity with polyhedral theory, we recall here some of its basic

elements. We refer the reader to any of [21, 22, 66, 74] for a more complete introduction.

The convex, conical, affine and linear hulls are essential tools to describe the geometry of polyhedra (see

Figures 1.1, 1.2, 1.3 and 1.4). They are defined here algebraically.

Definition 1. Let X be any subset of Rn. The convex hull conv(X) of X is given by

conv(X) :=

{∑
x∈X

λxx : λx ≥ 0 for all x ∈ X, and
∑
x∈X

λx = 1

}
.

Definition 2. Let R be any subset of Rn. The conical hull cone(R) of R is given by

cone(R) :=

{∑
r∈R

λrr : λr ≥ 0 for all r ∈ R

}
.

Definition 3. Let X be any subset of Rn. The affine hull aff(X) of X is given by

aff(X) :=

{∑
x∈X

λxx : λx ∈ R for all x ∈ X, and
∑
x∈X

λx = 1

}
.
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Figure 1.5: P =
⋂
iHi Figure 1.6: P = conv({xi}) + cone({ri})

Definition 4. Let R = {r1, r2, . . . , rk} be any subset of Rn. The linear hull (or linear span) lin(R) of R

is given by

lin(R) :=

{
k∑
i=1

λir
i : λi ∈ Rn for all i

}
.

The independence properties characterize the relationship between points in a set.

Definition 5 ([66]). A set of points x1, . . . , xk ∈ Rn is linearly independent if the unique solution of∑k
i=1 λix

i = 0 is λi = 0 for i = 1, . . . , k.

Definition 6 ([66]). A set of points x1, . . . , xk ∈ Rn is affinely independent if the unique solution of∑k
i=1 λix

i = 0 such that
∑k
i=1 λi = 0 is λi = 0 for i = 1, . . . , k.

We now define the concept of polyhedron. A description of a polyhedron, as provided here, in terms of

half-spaces is called an outer description (Figure 1.5).

Definition 7. A half-space H := {x ∈ Rn : αTx ≥ α0} is the feasible region of one inequality. If H is

not empty, its boundary is the hyperplane {x ∈ Rn : αTx = α0}.

Definition 8. A polyhedron P := {x ∈ Rn : Ax ≥ b} is the intersection of a finite number of half-spaces.

Definition 9. A polytope is a bounded polyhedron, i.e. a polyhedron P such that there exists U ∈ R finite

such that |xi| ≤ U for all i and for all x ∈ P .

The notion of dimension is introduced next, for any set in Rn.

Definition 10. A set P ⊆ Rn has dimension dim(P ) = k if the maximal number of affinely independent

points one can find in P is k + 1. It is comprised between −1 and n.

In order to fully characterize a polyhedron, one needs to describe its minimal faces, extreme rays, and

facets. In particular, if a polyhedron does not contain a line, its minimal faces are extreme points.

Definition 11. An extreme point x of a polyhedron P is a point x ∈ P such that there does not exist

y, z ∈ P such that x 6= y, x 6= z, and x ∈ conv({y, z}).
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Definition 12. A point x ∈ P is a vertex of the polyhedron P if there exists c ∈ Rn such that cTx < cT y

for any y ∈ P different from x.

Proposition 1. A point x ∈ P is a vertex of P if and only if it is an extreme point of P .

See e.g. [21] for a proof.

Definition 13. A vector r ⊆ Rn is a ray of a polyhedron P ⊆ Rn if for every point x ∈ P and every

scalar λ ≥ 0, x+ λr belongs to P .

Definition 14. An extreme ray r of a polyhedron P is a ray of P such that there do not exist two rays

s and t of P such that s 6= λr and t 6= λr for all λ > 0, and r ∈ 1
2s+ 1

2 t.

Definition 15. The recession cone recc(P ) of a polyhedron P is the set of all its rays: recc(P ) := {r ∈
Rn : x+ λr ∈ P for all x ∈ P, λ ≥ 0}.

Definition 16. The lineality space lin.space(P ) of a polyhedron P is the set lin.space(P ) := {r ∈ Rn :

x+ λr ∈ P for all x ∈ P, λ ∈ R}.

Note that if P does not contain a line, then recc(P ) = cone({r1, . . . , rq}), where {r1, . . . , rq} are the

extreme rays of P . The lineality space is a subset of the recession cone, and the three following statements

are equivalent [21]:

(a). the lineality space of the polyhedron P is empty,

(b). the polyhedron P does not contain a line,

(c). the polyhedron P has at least one vertex.

A polyhedron for which these statements are true is said to be pointed.

Minkowski’s theorem lays the foundations for the so-called inner description of a polyhedron, i.e. a

description in terms of vertices and rays (Figure 1.6).

Proposition 2 (Minkowski’s theorem). Any polyhedron P can be represented as P = conv({x1, . . . , xp})+
cone({r1, . . . , rq}) + lin({l1, . . . , lt}) where p, q and t are finite. In particular, if P is pointed, a minimal

description is obtained by choosing {x1, . . . , xp} to be the vertices of P , {r1, . . . , rq} the extreme rays of

P , and the vectors {l1, . . . , lt} to form a basis of the lineality space of P .

See e.g. [21] for a proof.

We now cover some basic nomenclature in the theory of valid inequalities. Note that the terms cut,

cutting plane, and valid inequality are used interchangeably in this text.

Definition 17. The inequality αTx ≥ α0 is valid for P if it is verified by every point of P , i.e. αTx ≥ α0

for all x ∈ P .
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Definition 18. The set F := {x ∈ P : αTx = α0} is a face of P if αTx ≥ α0 is a valid inequality for P .

It is called proper if it is not empty. The inequality αTx ≥ α0 is said to define the face F .

Definition 19. A face F of P is a facet if dim(F ) = dim(P )− 1.

Remark that extreme points of P are zero-dimensional faces of P [66].

Definition 20. Two inequalities αTx ≥ α0 and βTx ≥ β0 are equivalent if there exist λ > 0 such that

α = λβ and α0 = λβ0.

Definition 21. Let αTx ≥ α0 and βTx ≥ β0 be two valid inequalities for P ⊆ Rn+. αTx ≥ α0 dominates

βTx ≥ β0 if they are not equivalent and there exist λ > 0 such that α ≤ λβ and α0 ≥ λβ.

Proposition 3. An inequality αTx ≥ α0 is valid for a mixed-integer set P if and only if it is valid for

the convex hull conv(P ) of its solutions.

Proof. Since the half-space H associated to the inequality is a convex set, P ⊆ H if and only if conv(P ) ⊆
H.

The following proposition, known as the separating hyperplane theorem, is exploited extensively in the

proofs of Chapter 2.

Proposition 4 (Separating hyperplane theorem). Let P be a closed convex set and z a point that does

not belong to P . There exists a valid inequality αTx ≥ α0 for P such that αT z < α0.

See Section 4.7 in [21] for a proof.

1.6 Two examples of simple cutting planes

To illustrate how the diverse cutting plane generation techniques work, we present two fairly intuitive

ones in this section. We start with the Chvátal-Gomory rounding method.

Example 1. Assume that we want to solve the pure integer problem min{cTx : x ∈ P ∩ Zn+}, where Zn+
is a shorthand for {x ∈ Zn : x ≥ 0}. Now let

a1x1 + a2x2 + · · ·+ anxn ≥ a0 (1.6)

be a known valid inequality for the feasible region P ∩ Zn+. For example, if P is expressed as P := {x ∈
Rn : Ax ≥ b}, then (1.6) could be one constraint of its description, or a linear combination, i.e. a := uTA

and a0 := uT b for any u ∈ Rm+ . It is straightforward to observe that

da1ex1 + da2ex2 + · · ·+ danexn ≥ a0 (1.7)

is also a valid inequality for P ∩Zn+, as da1ex1 + · · ·+ danexn ≥ a1x1 + · · ·+ anxn ≥ a0 for any x ∈ Rn+.

The inequality (1.7) is said to be weaker than (1.6). Indeed, denoting by H1 the feasible region of (1.6)

and by H2 the feasible region of (1.7), we can observe that H1 ⊆ H2. Therefore H1 provides a better
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approximation of P ∩Zn+, or more rigorously, a stronger relaxation of conv(P ∩Zn+). However, (1.7) has

the additional property that its left-hand side takes integer values for any x ∈ Zn. The right-hand side

can thus be rounded up, yielding

da1ex1 + da2ex2 + · · ·+ danexn ≥ da0e (1.8)

which is again a valid inequality for P ∩ Zn+, yet stronger than (1.7).

Compared to the initial inequality (1.6), our cutting plane (1.8) could be weaker, stronger, or neither of

them, depending on the values of a and a0. Chvátal proved however in [26] that by applying this procedure

a finite number of times on all the inequalities describing P (i.e. applying a finite number of rounds

of cuts), one eventually generates all valid inequalities for P ∩ Zn+ [66]. Note that the rationality of

P is essential for this property to hold. The rounding method was developed by Chvátal in 1973 [26],

and was later found out to be equivalent to the Gomory fractional cuts developed by Gomory as early as

1958 [46, 48], although with a radically different approach.

Examining Gomory’s factional cut is worthwhile as well, since one stronger variant, the Gomory mixed-

integer cut (GMI), is among the most useful cutting planes in practice (the name is somewhat misleading

as not only the GMI procedure applies to mixed-integer problems, but it also yields stronger cuts in the

pure integer case).

Example 2. The development of Gomory’s fractional cut assumes a slightly different problem form,

min{cTx : x ∈ Zn+, Ax = b}. Note that the various expressions of integer linear problems can easily be

transformed into each other through the addition of variables and constraints. Let

a1x1 + a2x2 + · · ·+ anxn = a0 (1.9)

be a known valid equality for the feasible region. Typically, (1.9) is obtained by extracting one row from

Ax = b, or from a simplex tableau reformulation of Ax = b. By rounding down the a coefficients in (1.9),

we obtain

ba1cx1 + ba2cx2 + · · ·+ bancxn ≤ a0 (1.10)

which is also a valid for our feasible region. Now, the left-hand side of (1.10) is always integral for

x ∈ Zn, and we can round down the right-hand side,

ba1cx1 + ba2cx2 + · · ·+ bancxn ≤ ba0c. (1.11)

Finally, subtracting (1.11) from (1.9), we obtain

(a1 − ba1c)x1 + (a2 − ba2c)x2 + · · ·+ (an − banc)xn ≥ a0 − ba0c. (1.12)

The inequality (1.12) is the formula for the Gomory fractional cut. It can be applied to any valid constraint

aTx = a0 for a pure integer problem, and yields a new inequality for that problem.

There are too many methods for generating valid inequalities to detail them all here. In the next section

however, we expose one more, as it is the fundamental framework that underlies all the developments in

Chapter 2 and Chapter 3.
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Figure 1.7: The set L in the intersection cut framework

1.7 Intersection Cuts

The concept of intersection cut, introduced by Balas in [7], is a general framework for generating cutting

planes. Its nice geometric intuitiveness is better introduced with a simple example.

Problem 2. Consider an optimization problem with a feasible region {s ∈ Rn+ : s ∈ P}, where P is

an arbitrary closed set in Rn+ such that 0 /∈ P . Find a cutting plane separating 0 from P , i.e. a valid

inequality αT s ≥ α0 such that αT 0 < α0.

The last statement implies that we want α0 > 0. Since any valid inequality can be multiplied by a

positive scalar, yielding an equivalent valid inequality, we can simply fix α0 = 1 and look for α such that

αT s ≥ 1 for all s ∈ Rn+ ∩ P .

Since 0 /∈ P and P is closed, there must exist a bounded, closed convex set L whose interior contains 0

but no point of P , i.e. 0 ∈ interior(L) and interior(L) ∩ P = ∅. Figure 1.7 illustrates such a set. The

particular choice for the set L can be seen as a parameter in the intersection cut framework. Different

families of sets will yield different families of intersection cuts.

Let vi be the intersection of the ith axis with the boundary of L in the first orthant, for all i. Since vi is

on the ith axis, there exist β ∈ Rn+ such that vi = βiei. Consider the simplex L′ defined by the convex

hull of 0 and these intersection points, L′ = conv({0, β1e1, . . . , βnen}). Since L′ is the convex hull of

points that belong to L, L′ ⊆ L, thus L′ has the same property that interior(L′) ∩ P = ∅. Note that L′

can also be expressed as L′ = {s ∈ Rn+ : 1
β1
s1 + · · ·+ 1

βn
sn ≤ 1}.

Finally, consider the open half-space L′′ := {s ∈ Rn : 1
β1
s1 + · · · + 1

βn
sn < 1}. One can observe that all

points of L′′ belong to at least one of two sets:

(a) the complement set of the first orthant Rn \ Rn+,

(b) the interior of L.
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Figure 1.8: Example set L; αi > 0 for all i. Figure 1.9: Example set L; α0 = 0.

Therefore, none of the points of L′′ belong to P , and we conclude that

1

β1
s1 + · · ·+ 1

βn
sn ≥ 1 (1.13)

is a valid inequality for P .

We now adopt a more rigorous approach and develop the intersection cut in the algebraic context of

integer programming. Let our feasible region be the integer set P := {y ∈ Zp+ : Ay = b}, with A ∈ Rm×p,
b ∈ Rm, and p > m. Assume that we can construct the square nonsingular matrix Ax from a subset

of m columns of A. For convenience, we write A = [Ax|As] as if Ax covers the m first columns of

A, although it is not necessarily the case. According to the same partition, we denote by x and s

the original variables, i.e. yT = [xT |sT ]. With this notation, the feasible region can be rewritten

P = {(x, s) ∈ Zm+ × Zn+ : Axx + Ass = b}, with n := p −m. Letting R := −A−1
x As and f = A−1

x b, and

pre-multiplying both terms of the vector equality by A−1
x , we finally obtain

P = {(x, s) ∈ Zm+ × Zn+ : x = f +Rs}. (1.14)

Although it may seem contrived, the reformulation (1.14) is perfectly natural in the context of linear

programming, especially if one uses the simplex algorithm to optimize over the linear relaxation PLP of

P . Indeed, Ax is called a basis of the system Ay = b, and we know from linear programming theory

that any vertex y∗ of PLP can be represented through at least one such basis by fixing s = 0, yielding

y∗ = (f, 0). The x variables are thus called basic variables and s nonbasic variables. We refer to [21] for

a more detailed exposition of the linear programming context.

Motivated by the form of the cut (1.13), we will prove the following theorem.

Theorem 1 (Balas [7]). Let L ⊆ Rm be a closed convex set whose interior contains f but no integer

point, i.e. f ∈ interior(L) and interior(L) ∩ Zm = ∅. If α ∈ Rn+ is defined such that

αi = inf{t > 0 : f +
1

t
ri ∈ L}

with ri being the ith column of R, then αT s ≥ 1 is a valid inequality for P .
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Proof [28]. By the definition of α, the point f + 1
αi
ri is the intersection of the ray f + cone(ri) with the

boundary of L, if such intersection exists (Figure 1.8). Otherwise, αi = 0 and ri belongs to the recession

cone of L (Figure 1.9). Without loss of generality, assume that αi > 0 for i ∈ {1, . . . , k} and that αi = 0

for i ∈ {k + 1, . . . , n}. Let

L′ := {x ∈ Rm : x = f + r1s1 + · · ·+ rnsn, s ∈ Rn+, α1s1 + · · ·+ αksk < 1} (1.15)

be the projection on the space of the x variables of the points (x, s) ∈ Rm × Rn+ that are cut off by

αT s ≥ 1. We now show that L′ is a convex combination of the points {f + µ
αi
ri : 0 ≤ µ < 1} for

i ∈ {1, . . . , k}, plus a conic combination of ri for i ∈ {k + 1, . . . , n}. Indeed, let L̄ be such a set,

L̄ = {x ∈ Rm : x = fλ0+ (f + µ1

α1
r1)λ1 + · · ·+ (f + µk

αk
rk)λk + cone(rk+1, . . . , rn)

λ0+ λ1 + · · ·+ λk = 1

λ ∈ Rk+, 0 ≤ µi < 1 }
= {x ∈ Rm : x = f+ 1

α1
r1µ1λ1 + · · ·+ 1

αk
rkµkλk + cone(rk+1, . . . , rn)

λ1 + · · ·+ λk ≤ 1

λ ∈ Rk+, 0 ≤ µi < 1 }.

Now letting si := 1
αi
µiλi for i ∈ {1, . . . , k} and si ≥ 0 for i ∈ {k + 1, . . . , n}, we obtain

L̄ = {x ∈ Rm : x = f+ r1s1 + · · ·+ rksk + cone(rk+1, . . . , rn)

α1s1 + · · ·+ αksk < 1

s ∈ Rk+ }
(1.16)

We can observe that the right-hand sides of (1.16) and (1.15) are equivalent, implying that L̄ = L′. Since

L is convex and the expression (1.16) shows that any point of L′ is a convex combination of points in

the interior of L, we have that L′ ⊆ interior(L). We thus know that L′ ∩ Zm = ∅, therefore no point

(x, s) ∈ P satisfies α1s1 + · · ·+ αnsn < 1. So αT s ≥ 1 is a valid inequality for P .

A set such as L that does not contain integer points in its interior is called a lattice-free set. Furthermore,

a lattice-free set L is said to be maximal if there does not exist a lattice-free set K such that L ⊂ K.

Given the geometric intuition, it is natural to look for maximal lattice-free sets in order to find strong

cuts, but we will come back to this topic more precisely in a later discussion.

Obviously, if f ∈ Zm, no lattice-free set could contain it in its interior, and it is impossible to apply

Theorem 1 to find a valid inequality. We thus assume that there exist i such that fi /∈ Z.

Among the simplest lattice-free sets is the split set Lπ := {x ∈ Rm : π0 ≤ πTx ≤ π0 + 1} for π ∈ Zm and

π0 ∈ Z. Figure 1.9 illustrates such split set if π = e2 and π0 = 1. It is possible to generate an intersection

cut based on a split set for any π ∈ Zm such that πT f /∈ Z. As any intersection cut, it then separates

the point (x, s) = (f, 0).

One could note that the proof of Theorem 1 uses neither the fact that the basic variables are nonnegative-

constrained, nor the fact that the nonbasic variables are integer-constrained. Indeed, the intersection cut

is also valid for a relaxation of P where these constraints are dropped. Recall that P = {(x, s) ∈ Zm+×Zn+ :

x = f+Rs}. Intersection cuts are valid for the set PI := {(x, s) ∈ Zm×Rn+ : x = f+Rs}. The set PI can
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be seen as a further relaxation of the corner relaxation introduced by Gomory and Johnson [50, 51, 52],

which in our case is given by {(x, s) ∈ Zm × Zn+ : x = f + Rs}. Andersen, Louveaux, Weismantel and

Wolsey [4] and Cornuéjols and Margot [29] studied the case m = 2 and they showed that all facets of

conv(PI) are intersection cuts obtained from lattice-free polyhedra in R2 with at most four sides. This

result has been generalized to m ≥ 2 by Borozan and Cornuéjols [25], showing that the facets of conv(PI)

are defined by intersection cuts from lattice-free polyhedra in Rm.

An additional type of constraint commonly occurs in mixed-integer problems: upper bounds on the

variables, both basic and nonbasic. While we could reformulate problems featuring this type of constraints

into the simpler form {y ∈ Zp+ : Ay = b}, this is usually not done for computational reasons, as it would

significantly increase the size of the problem. These upper bound constraints, too, are not taken into

account when generating intersection cuts with Theorem 1.

A lot of recent research has been dedicated to strengthening intersection cuts from lattice-free sets,

by reintroducing these dropped constraints. Andersen, Louveaux and Weismantel [2] considered upper

bounds on nonbasic variables. Dey and Wolsey [38], Basu, Conforti, Cornuéjols and Zambelli [20] and

Fukasawa and Günlük [45] considered bounds on basic variables. Dey and Wolsey [37, 33] and Conforti,

Cornuéjols and Zambelli [27] considered the problem of exploiting the integrality of the nonbasic variables,

the so-called lifting problem.

The latter works take place in an interesting setting introduced by Gomory and Johnson [51], the infinite

relaxation
P∞ := {(x, s) : x = f +

∑
r∈Rm rsr

x ∈ Zm

sr ∈ Z+ for all r ∈ Rm

s has a finite support },

(1.17)

instead of PI . Note that P∞ is an integer set in an infinite-dimensional space. The corner relaxation

{(x, s) ∈ Zm × Zn+ : x = f + Rs} of P is given by intersecting P∞ with sr = 0 for any r that is not

a column of R, then projecting onto the space of P . An intersection cut for P∞ is typically given by a

function ψ(r) : Rm → R+ representing the cut
∑
r∈Rm ψ(r)sr ≥ 1. One property of P∞ is that there is

a direct correspondence between maximal lattice-free sets in Rm and undominated intersection cuts. We

refer to [28] for a recent survey of this line of work.

Note that for m = 1, as was already pointed out by Balas [7], the lifting problem can be solved in closed

form, yielding strengthened intersection cuts that turn out to be equivalent to Gomory’s mixed-integer

cuts. The interested reader can find more on the relationships between the major families of cutting

planes in [31] and an interesting summary from a computational perspective in [73].

1.8 Two-row Cuts

Although Balas introduced the concept of intersection cut in 1971 [7], there has been a flurry of papers

about related concepts in the recent years. This renewed interest was mostly spawned by a 2007 paper by

Andersen, Louveaux, Weismantel and Wolsey [4] providing intuitive and elegant geometric insight into

the intersection cut model for m = 2. Since this model is typically built from two rows of the simplex
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T 1 T 2A T 2B T 3

Q1 ⊂ T 1 Q1 ⊂ T 2A Q2 split set

Figure 1.10: Different types of Lα

tableau, the resulting cuts are called two-row cuts. The intersection cuts originating from the same model

for m ≥ 2 are now also commonly referred to as a multi-row cuts. Albeit not strictly necessary for our

further developments, we present here one result from [4] that enables most of the geometric intuition.

We assume throughout this section that m = 2.

Let us define the polyhedron Lα in R2 as

Lα := {x ∈ R2 : there exists s ∈ Rn+ such that x = f +Rs and αT s ≤ 1}.

It corresponds to the closure of L′ in the proof of Theorem 1, and is the minimal convex set yielding

αT s ≥ 1 as an intersection cut.

Theorem 2 (Andersen, Louveaux, Weismantel and Wolsey [4]). Let αT s ≥ 1 be a facet-defining inequality

for conv(PI) that satisfies αj > 0 for all j. Then Lα is a polygon with at most four vertices.

Note that if Lα is a maximal lattice-free set and there exist j such that αj = 0, then Lα can only be a

split set of the form π0 ≤ π1x1 +π2x2 ≤ π0 + 1 where π0 ∈ Z, π1 and π2 are coprime integers, as pictured

in Figure 1.9.

Further refinements of Theorem 2 by Dey and Wolsey [33] and Dey and Louveaux [35] classify the maximal

lattice-free polygons that correspond to facets of conv(PI).

Proposition 5 (Dey and Louveaux [35]). Let αT s ≥ 1 be a facet-defining inequality for PI . If the

rays {ri} span R2 (i.e. if cone{r1, . . . , rn} = R2), then f ∈ interior(Lα) and Lα is one of the following

lattice-free sets:

1. Subset of a split set: {x ∈ R2 : π0 ≤ π1x1 + π2x2 ≤ π0 + 1} where π1, π2, π0 ∈ Z.
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2. Type 1 triangle (T 1): A triangle with integral vertices and exactly one integer point in the relative

interior of each side.

3. Type 2 triangle (T 2): A triangle with at least one non-integral vertex v and the opposite side containing

multiple integer points (not necessarily all in the relative interior). Let S1 and S2 be the two sides

incident to v, and let S3 be the third side. Then T 2 is further classified as:

(a) T 2A: S1 and S2 contain one integer point in their relative interior.

(b) T 2B: S1 contains one integer point in its relative interior and S2 does not contain any integer

point in its relative interior. This triangle is a subset of some triangle of type T 2A.

4. Type 3 triangle(T 3): A triangle with non-integral vertices and exactly three integer points on its bound-

ary, one in the relative interior of each side.

5. Type 1 quadrilateral (Q1): A subset of T 1 or T 2A such that one side contains multiple integer points,

two sides contain at least one integer point and the fourth side contains no integer point in its relative

interior.

6. Type 2 quadrilateral (Q2): A quadrilateral having non-integral vertices and containing exactly one

integer point in the relative interior of each of its sides.

The classification presented in Proposition 5 is illustrated in Figure 1.10.

1.9 Overview of the thesis

The first part of this thesis presents a fast intersection cut separator for the two-row model PI described

in Section 1.8. While other cut generators have been developed for that model [34, 18], our approach

differs from these in that we perform exact separation. Specifically, given any point x∗ ∈ PLP , we find

the facet-defining inequality for conv(PI) that is most violated at x∗, or prove that x∗ ∈ conv(PI). This

is a significant departure from previous works, which were not separators and relied on heuristics to find

strong cuts. In particular, we do not adopt the “infinite relaxation” point of view and we do not generate

intersection cuts from fixed lattice-free bodies.

We achieve this by optimizing over a specific polyhedron Q (the polar set of conv(PI)), an approach

that was suggested in [3]. Chapter 2 lays the theoretical bases for this, gathering the known results

on the structure of conv(PI), and replacing them in our separation context. In Chapter 3, we first

present an alternative polyhedron Q that is equivalent to Q for our purposes, but has a much more

compact formulation. In practice, the size of the description of Q is linear in the number of variables,

while the description of Q is quadratic. This reduction in complexity enables the implementation of a

fast separator that operates by optimizing over small linear problems. The construction of these linear

problems, however, requires the computation of the vertices of the integer hull of cones in R2. This type of

computation is particularly difficult to implement safely in practice, as it mixes integer hull computations

(involving large numbers and thus typically performed in exact arithmetic) with optimization models

(performed in floating-point arithmetic, and featuring plenty of arbitrary tolerances). In the second part
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of Chapter 3, we show how to avoid this issue by performing row generation, i.e. constructing iteratively

the description of Q, adding the constraints only as they are needed. The main hurdle towards this is to

develop a fast oracle for, given a partial description of Q, finding a constraint that should be added to

it. We present such an oracle in Section 3.2.

The computational results in Section 3.3 confirm that our separator is indeed fast. According to our

measurements however, the resulting cuts do not strengthen the corresponding MIP formulations in a

satisfactory manner. The fact that our separator is exact tends to indicate that it is the two-row model

PI itself that is weak.

There are a lot of ways to obtain stronger models, either by considering more rows, or by reinforcing

the intersection cut model. The second part of this thesis tackles the question of determining which

among these strengthened models present promising perspectives, computationally. In Chapter 4, we

briefly survey some of the most important such models, and perform a first, very coarse evaluation of

their potential. As this evaluation is not precise enough, we resort to developing a general-purpose cut

separator, able to find facet-defining inequalities for arbitrary mixed-integer sets. This is the subject

of Chapter 5. Obviously, such a separator could not be fast, and our objective is only to evaluate the

strength of multi-row relaxations in reasonably small MIP instances. But a naive implementation would

not let us conclude anything, even on the smallest problems. We present a series of computational tricks

that enabled our separator to provide satisfactory results on most problems from the MIPLIB 3.0 library.

Exploiting this tool, we test several variants of the intersection cut model, and are able to present a

quantitative analysis of their strength.





Chapter 2

Polars of two-row models

2.1 Overview

In this chapter, we delve deeper into the polyhedral structure of the convex hull of the two-row model

PI := {(x, s) ∈ Z2 × Rn+ : x = f +Rs}

presented earlier. This helps us build a representation of the set of all valid inequalities for PI . Then, we

show how to exploit that expression to find facet-defining valid inequalities for PI , and how to perform

separation. Finally, we draw links between this set and the cut-generating LP (CGLP) from the lift-and-

project method of Balas, Ceria and Cornuéjols [11].

While we do not present novel results in this chapter, we strive to make it a concise, self-contained

introduction to the structure of the two-row model PI , with the practical generation of cuts in mind.

To that end, we define the concept of radial polyhedron and redevelop most of the results presented here

with an intuitive perspective suiting that framework.

In our context, the set describing the valid inequalities for a polyhedron is called its polar. It is also

a polyhedron, and we find a violated inequality by optimizing over it, with a linear objective function.

Separation is thus a linear programming problem and, to perform it, we need an outer description of the

polar, in terms of linear constraints. We show in Section 2.3 that we can obtain such a description from

an inner description of the initial polyhedron, in our case conv(PI). To this end, we present a detailed

characterization of the structure of conv(PI) in Section 2.2.

2.2 Structure of conv(PI)

Let us denote by N the set {1, . . . , n}. As noted earlier, we assume that f /∈ Z2. Recall that we denote

by ri the ith column of R, for i ∈ N , and that we assume rational data for R and f , thus ri ∈ Q2.

Moreover, we assume without loss of generality that no two vectors ri, rj are parallel with the same

direction. Indeed, if that were to be the case, we could aggregate the corresponding variables si and sj

into a single one, resulting in only one column of R.

A first basic characterization of the structure of conv(PI) is provided in Lemma 1.
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Lemma 1 (Andersen, Louveaux, Weismantel and Wolsey [4]).

(i) The dimension of conv(PI) is n.

(ii) The extreme rays of conv(PI) are (ri, ei) for all i ∈ N .

(iii) The vertices (xI , sI) of conv(PI) take the following two forms:

(a) (xI , sI) = (xI , sIi ei), where xI = f + sIi r
i ∈ Z2. xI is an integer point on the ray {f + sir

i :

si ≥ 0}.

(b) (xI , sI) = (xI , sIi ei + sIjej), where xI = f + sIi r
i + sIjr

j ∈ Z2. xI is an integer point in the cone

f + cone(ri, rj).

Proof (Andersen, Louveaux, Weismantel and Wolsey [3]). Let (x̄, s̄) be an arbitrary point of PI . For

any i ∈ N , since ri ∈ Q2, there exists a positive integer qi such that qir
i is integer. (i): Since x is

determined unequivocally for any value of s, conv(PI) is at most of dimension n. Moreover, the (n+ 1)

points (x̄, s̄) and {(x̄ + qir
i, s̄ + qiei)} for all i ∈ N are in PI and affinely independent. (ii): We have

f +
∑
i∈N s̄ir

i + kiqir
i ∈ Z2 if k ∈ Zn+. This proves that (ri, ei) is a ray of conv(PI), for all i ∈ N . In

addition, since conv(PI) ⊆ R2×Rn+, every other ray of conv(PI) can be expressed as a conic combination

of these rays. (iii): If (x̄, s̄) is a vertex of conv(PI), then x̄ is integer, and s̄ is a basic solution to the

system {s ∈ Rn+ :
∑
i∈N r

isi = x̄− f}.

Pushing further on the point (iii) of Lemma 1, we can establish a relationship between the vertices of

conv(PI) ⊆ Rn and the vertices of the integer hull of some cones in R2. Lemma 2 establishes this

relationship, enabling an intuitive representation of the vertices of conv(PI) in the plane (x1, x2) ∈ R2.

Lemma 2. The vertices (xI , sI) of conv(PI) are of the form:

(a) (xI , sI) = (xI , sIi ei), where xI is the vertex of conv(Z2 ∩ f + cone(ri)), i.e. the integer point on the

half-line {f + sir
i : si ≥ 0} that is closest to f (in terms of Euclidian distance).

(b) (xI , sI) = (xI , sIi ei + sIjej), where xI is a vertex of conv(Z2 ∩ f + cone(ri, rj)).

Proof. (a): If there exists (x′, s′) = (x′, s′iei), where x′ = f + s′ir
i ∈ Z2 and 0 ≤ s′i < sIi , then (xI , sI) ∈

(x′, s′) + cone(ri), hence (xI , sI) is not a vertex of conv(PI). (b): If xI is not a vertex of conv(Z2 ∩ f +

cone(ri, rj)), then there must exist x(1), . . . , x(K) ∈ {Z2∩f + cone(ri, rj)} such that xI =
∑
k λkx

(k) and∑
k λk = 1. Let s(1) = s

(1)
i ei + s

(1)
j ej be such that(
s

(1)
i

s
(1)
j

)
=

[
ri1 rj1
ri2 rj2

]−1(
x

(1)
1 − f1

x
(1)
2 − f2

)
.

Since cone(ri) 6= cone(rj), the inverse exists, and as x(1) ∈ f + cone(ri, rj), we have that s
(1)
i , s

(1)
j ≥ 0

so (x(1), s(1)) ∈ PI . Defining s(2), . . . , s(K) similarly, we have (x(k), s(k)) ∈ PI for all k. By linearity,

sI =
∑
k λks

(k), thus (xI , sI) =
∑
k λk(x(k), s(k)), hence (xI , sI) is not a vertex of conv(PI).
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While all vertices of conv(PI) have the form given in Lemma 2, not all points of that form are necessarily

vertices of conv(PI). However, points of that form are all, by construction, feasible for conv(PI). We can

therefore build an expression of conv(PI) using the convex hull of these points and cone{ri : i ∈ N}. In

order to express this in a compact form, we first introduce some notation.

Given a pair of indices (i, j), Cij denotes the conic polyhedron with apex f and two extreme rays ri and

rj .

Definition 22. Cij := {x ∈ R2 : x = f + risi + rjsj , si, sj ≥ 0}.

Definition 23. Xij is the set of vertices of conv(Cij ∩ Z2).

Note that the set Xij is the set of vertices of its own convex hull conv(Xij), i.e. every element of Xij is a

vertex of conv(Xij). Also, conv(Xij) = conv(Cij ∩ Z2) is called the integer hull of Cij .

Once we fix i and j, every point x ∈ R2 has a unique representation as x = f + risi + rjsj . If ri and rj

are not parallel, that representation is given by (si sj)T = [ri|rj ]−1(x− f).

Definition 24. Let x, ri, rj ∈ R2. We define sxi,j and sxj,i to be such that

x = f + sxi,j r
i + sxj,i r

j .

These values exist and are unique unless ri = νrj , for some ν ∈ R.

Observe that sxi,j , s
x
j,i exist and sxi,j , s

x
j,i ≥ 0 if and only if x ∈ Cij . The following definition is similar

except that it deals with the vector rj .

Definition 25. Let ri, rj , rk ∈ R2. We define λji,k and λjk,i to be such that

rj = λji,k r
i + λjk,i r

k.

These values exist and are unique unless ri = νrk, for some ν ∈ R.

Finally, we can express conv(PI) in terms of a convex hull and its extreme rays,

conv(PI) = conv{(x, s) : x ∈ Xij , s = sxi,jei + sxj,iej , i, j ∈ N}+ cone{(ri, ei) : i ∈ N}.

2.3 Polarity

In the context of optimization, the term polar is most commonly used to denote a set describing all the

valid inequalities of a polyhedron. Let P be a polyhedron. In all generality, the polar of P ∈ Rn could

be defined as

Q := {(α, α0) ∈ Rn × R : αx ≥ α0 for all x ∈ P}.

Since we are interested in valid inequalities for P = conv(PI), which features particular properties, we

derive here a specific polar for a family of polyhedra that includes conv(PI). For the sake of conciseness,

we call them radial polyhedra. This polar is tightly related to the 1-polar in Nemhauser and Wolsey [66],

the latter applying to full-dimensional polytopes.
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Definition 26. We call a polyhedron P radial if

(a) P is not empty,

(b) P does not contain a line,

(c) P does not contain the origin 0, and

(d) for every x ∈ P , µx ∈ P for all µ ≥ 1.

Remark that the condition (d) could alternatively be written P = P + cone(P ), or P ⊆ recc(P ).

We showed earlier that the dimension of conv(PI) is n, as is the dimension of its projection on the space of

the s variables. There is thus a one-to-one relationship between the valid inequalities for conv(PI) and the

valid inequalities for that projection projs(conv(PI)). More precisely any valid inequality βTx+αT s ≥ γ
for conv(PI) can reformulated as

(αT + βTR)s ≥ γ − βT f

by eliminating the coefficients for x, yielding a valid inequality for projs(conv(PI)). Conversely, any valid

inequality αT s ≥ α0 for projs(conv(PI)) is a valid inequality for conv(PI). Note that 0 /∈ projs(conv(PI)),

projs(conv(PI)) ⊆ Rn+, and the recession cone of projs(conv(PI)) is Rn+, so projs(conv(PI)) is radial.

Through normalization of the right-hand side, valid inequalities can be divided in three classes: αTx ≥ 1,

βTx ≥ 0 and γTx ≤ 1. Proposition 6 lets us dismiss the latter class for radial polyhedra.

Proposition 6. Let P be a radial polyhedron. Every facet-defining inequality of P is of the form αTx ≥
1, α ∈ Rn or βTx ≥ 0, β ∈ Rn.

Proof. Consider a facet-defining inequality of type γTx ≤ 1. Either γTx ≤ 0 for all x ∈ P , in which case

γTx ≤ 1 does not describe a proper face of P , or there exists x̄ ∈ P such that 0 < γT x̄ ≤ 1. Then,

µx̄ ∈ P for all µ ≥ 1. In particular, choosing µ = 2
γT x̄

, we obtain γT (µx̄) = 2, hence γTx ≤ 1 is not a

valid inequality for P .

Furthermore, we can write a variant of the separating hyperplane theorem for radial polyhedra that

involves only valid inequalities of the first class.

Proposition 7. Given a radial polyhedron P and a point y /∈ P , there exists a valid inequality αTx ≥ 1

for P such that αT y < 1.

Proof. By the separating hyperplane theorem, there exists a valid inequality for P that separates y. (a).

If the inequality is of the form αTx ≥ 1, then the claim is proven. (b). Assume that the inequality is of

the form βTx ≥ 0. As it separates y, we know that βT y < 0. Since 0 /∈ P , by the separating hyperplane

theorem, there also exist a valid inequality separating 0. That second inequality can not be of the form

β̄Tx ≥ 0 or γ̄Tx ≤ 1 as it would then not separate 0. Let ᾱTx ≥ 1 be that valid inequality for P . If

ᾱT y < 1 then it separates y and the claim is proven. Otherwise, ᾱT y ≥ 1. We now linearly combine the
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two valid inequalities with the positive coefficients ᾱT y
−βT y and 1, yielding a third valid inequality α̃Tx ≥ 1

with α̃ = ᾱT y
−βT yβ + ᾱ. That inequality separates y since ᾱT y

−βT yβ
T y + ᾱT y = 0 < 1. (c). Assume that

the inequality is of the form γTx ≤ 1. As we have shown earlier, there does not exist x̄ ∈ P such that

γT x̄ > 0. Indeed, we would then have µx̄ ∈ P for all µ ≥ 1. In particular, choosing µ = 2
γT x̄

, we would

obtain γT (µx̄) = 2, showing that γTx ≤ 1 is not a valid inequality for P . Hence we can strengthen the

inequality by writing γTx ≤ 0, or equivalently βTx ≥ 0 where β = −γ. Using (b), we obtain a valid

inequality of the desired form.

We are now ready to write the definition of the polar of a radial polyhedron. Although we arbitrarily

restrict ourselves to valid inequalities of the form αTx ≥ 1, we will show at the end of this section why

this choice preserves the generality of the definition.

Definition 27. Let P be a radial polyhedron. The polar Q of P is the set of all α ∈ Rn such that

αTx ≥ 1 is a valid inequality for P :

Q =
{
α ∈ Rn : αTx ≥ 1, for all x ∈ P

}
.

We next present a description of Q in terms of vertices and extreme rays of P . This is especially handy

as this is the type of description that we have of conv(PI).

Proposition 8 ([66] Proposition 5.1). Q is described by

Q = { α ∈ Rn : αTxk ≥ 1 for all xk extreme point of P

αT rj ≥ 0 for all rj extreme ray of P }.
(2.1)

Proof. Let Q′ denote the right-hand side of (2.1). Q ⊆ Q′: Suppose ᾱ ∈ Q. For every xk extreme point

of P and rj extreme ray of P , we have ᾱT (xk + µrj) ≥ 1 for all µ ≥ 0. This implies ᾱTxk ≥ 1 and

ᾱT rj ≥ 0. Hence ᾱ ∈ Q′. Q′ ⊆ Q: Conversely if α ∈ Q′ and x ∈ P , then x =
∑
k λkx

k +
∑
j µjr

j for

some λ, µ satisfying
∑
k λk = 1, λk ≥ 0, µj ≥ 0. Hence αTx =

∑
k λk(αTxk) +

∑
j µj(α

T rj) ≥ 1. So

α ∈ Q.

Proposition 8 gives a set of constraints describing Q and we know from linear programming theory that

all facet-defining inequalities for Q are part of these constraints (modulo scalar multiplication). The

description may also include non-facet-defining, hence redundant, constraints. However, Proposition 9

shows that all constraints of the form αTxk ≥ 1, where xk is a vertex of P , are facet-defining for Q.

Proposition 9. The facet-defining inequalities of Q are

(a). αTxk ≥ 1 for all xk extreme point of P

(b). αT rj ≥ 0 for all rj extreme ray of P such that rj /∈ cone{x : x is an extreme point of P}.
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Proof. (a). If P only has one vertex u, then the constraint αTu ≥ 1 of Q separates α = 0. None of the

other constraints of Q in (2.1) separate 0, so αTu ≥ 1 is necessary to its description, and is hence facet-

defining for Q. Otherwise, let y be an arbitrary vertex of P and let P y = conv{x : x is a vertex of P , x 6=
y}+ recc(P ). Because recc(P y) = recc(P ), P y is also radial, and we denote its polar by Qy. Obviously,

P y ( P , indeed y ∈ P \P y, and by Proposition 7, there exists an inequality ᾱTx ≥ 1 that is valid for P y

and separates y. Thus ᾱ ∈ Qy while ᾱ /∈ Q, proving that Qy 6= Q. Therefore, all the inequalities of the

form αT y ≥ 1 for y extreme point of P are necessary to the description of Q, and are hence facet-defining

for Q.

(b). Let PX = conv{x : x is a vertex of P} + cone{x : x is a vertex of P}. Since P is radial, PX ⊆
P + cone(P ) and as noted earlier, P = P + cone(P ), so PX ⊆ P . Let t be an extreme ray of

P such that t /∈ cone{x : x extreme point of P}, i.e. t /∈ recc(PX), and let P t = PX + cone{r :

r is an extreme ray of P, r 6= t}. Because t is an extreme ray of P , it can not be expressed as a conic

combination of other rays of P , so t /∈ recc(P t). By construction, P t is radial and we denote its polar by

Qt. Furthermore, recc(P t) ⊆ recc(P ) hence P t ⊆ P . Let w be an arbitrary vertex of P . As t /∈ recc(P t),

there exist M ∈ R+ sufficiently large such that z = w+Mt does not belong to P t, while by construction

it belongs to P . By Proposition 7, there exists an inequality α̃Tx ≥ 1 that is valid for P t and separates

z. Thus α̃ ∈ Qt while α̃ /∈ Q, proving that Qt 6= Q. Therefore, all inequalities of the form αT t ≥ 0 for

t extreme ray of P such that t /∈ cone{x : x vertex of P} are necessary to the description of Q, and are

hence facet-defining for Q.

One elegant property of radial polyhedra, which they share with full-dimensional polytopes [66], is a

simple duality relationship between them and their polar. Proposition 10 and Proposition 11 establish

this duality.

Proposition 10. The polar Q of a radial polyhedron P is a radial polyhedron.

Proof. (a). Since 0 /∈ P , by Proposition 7, there exist a valid inequality ᾱTx ≥ 1 for P that separates 0,

hence ᾱ ∈ Q, showing that Q is not empty. (b). Since P is not empty, 0Tx ≥ 1 is not a valid inequality

for P , thus 0 /∈ Q. (c). By Proposition 8, Q is a polyhedron. Let α ∈ Q, we know that αTx ≥ 1 for all

x ∈ P . Then for all x ∈ P , (µα)Tx = αT (µx) ≥ 1, since µx ∈ P . Thus µα ∈ Q.

Proposition 11 ([66] Proposition 5.4). The polar of Q is P .

Proof. By Proposition 10, Q is a radial polyhedron, thus its polar can be defined as in Definition 27. Let

P = {y ∈ Rn : yTα ≥ 1, for all α ∈ Q} be the polar of Q. If x ∈ P , then αTx ≥ 1, for all α ∈ Q. Thus

x ∈ P , so P ⊆ P . Now let y /∈ P . By Proposition 7, there exists a valid inequality αTx ≥ 1 of P such

that αT y < 1. Since α ∈ Q, y /∈ P , so P \ P = ∅.

Corollary 1. The facet-defining inequalities of P are

(a). αTx ≥ 1 for all α extreme point of Q

(b). βTx ≥ 0 for all β extreme ray of Q such that β /∈ cone{α : α extreme point of P}.
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Figure 2.1: Example radial set P Figure 2.2: Example polar Q

The following example illustrates the properties that we established in this section.

Example 3. Let P ⊆ R2 be given by (Figure 2.1)

P = conv(x1, x2) + cone(r1, r2),

where

x1 =

(
2

1

)
, x2 =

(
1

1

)
, r1 =

(
2

1

)
, r2 =

(
0

1

)
.

It is easy to verify that P is radial. From the vertices and extreme rays of P immediately follows a

description of its polar Q in terms of the constraints (Figure 2.2)

Q = {(α1, α2) ∈ R2 : 2α1 + α2 ≥ 1 (2.2)

α1 + α2 ≥ 1 (2.3)

2α1 + α2 ≥ 0 (2.4)

α2 ≥ 0}. (2.5)

By optimizing over Q, we can obtain vertices and extreme rays of Q. In our small example, we can

observe that

Q = conv(α1, α2) + cone(β1, β2)

with

α1 =

(
1

0

)
, α2 =

(
0

1

)
, β1 =

(
1

0

)
, β2 =

(
−1

2

)
.

and that (2.2), (2.3) and (2.5) are facet-defining for Q while (2.4) is not (it is strictly dominated by (2.2)).

Indeed, the corresponding extreme ray of P

r1 ∈ cone(x1, x2).

Conversely, the vertices and extreme rays of Q yield a constraint description of P

P = {(x1, x2) ∈ R2 : x1 ≥ 1 (2.6)

x2 ≥ 1 (2.7)

x1 ≥ 0 (2.8)

−x1 + 2x2 ≥ 0} (2.9)
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where (2.6), (2.7) and (2.9) are facet-defining for Q while (2.8) is not (it is strictly dominated by (2.6)).

Again, the corresponding ray of Q

β1 ∈ cone(α1, α2).

We now have all the tools necessary to separate facet-defining inequalities for conv(PI). Indeed, we

have developed a description of conv(PI) in terms of its extreme rays and (a superset of) its vertices.

Proposition 8 provides us with a way to write down its polar from that description. We can thus construct

valid inequalities for conv(PI) from feasible points of its polar. Furthermore, Corollary 1 shows that all

the vertices of the polar are facet-defining inequalities for conv(PI), and all facet-defining inequalities for

conv(PI) are given by vertices and extreme rays of its polar.

2.4 Separation

Putting the results of the previous section to practice, the polar Q of projs(conv(PI)) is given by

Q = { α ∈ Rn : sTα ≥ 1, ∀(x, s) extreme point of conv(PI)

tTα ≥ 0, ∀(r, t) extreme ray of conv(PI) }
(2.10)

or, with our notation,

Q = { α ∈ Rn : sxi,jαi + sxj,iαj ≥ 1, ∀i, j ∈ N, ∀x ∈ Xij ,
αi ≥ 0, ∀i ∈ N }.

(2.11)

Recall however that as not all x ∈ Xij are guaranteed to correspond to vertices of conv(PI), the latter

expression may introduce redundant (yet valid) inequalities sxi,jαi + sxj,iαj ≥ 1.

Any α ∈ Q yields a valid inequality αTx ≥ 1 for P . In particular, by solving the linear optimization

problem

min cTα

s.t. sxi,jαi + sxj,iαj ≥ 1 ∀i, j ∈ N, ∀x ∈ Xij
α ∈ Rn+

(2.12)

for any c ≥ 0 with the simplex algorithm, we obtain a finite optimal solution α∗ that is a vertex of Q

and hence corresponds to a facet-defining inequality α∗Tx ≥ 1 of conv(PI). Since that inequality is an

intersection cut, it separates the fractional point (f, 0).

Furthermore, we can perform separation on any arbitrary point (x̄, s̄) ∈ R2 × Rn with x̄ = f + Rs̄, i.e.

any point of the linear relaxation of PI , by solving the linear optimization problem min{s̄Tα : α ∈ Q}.
Let α∗ be the optimal solution. If s̄Tα∗ < 1, we found a most-violated, facet-defining valid inequality for

conv(PI) that separates (x̄, s̄). Otherwise, if s̄Tα∗ ≥ 1, it means that s̄Tα ≥ 1 for all α ∈ Q, meaning

that no valid inequality for conv(PI) separates (x̄, s̄). In other words, it means that (x̄, s̄) ∈ conv(PI).

2.5 Linear programming derivation of the polar of conv(PI)

In this section, we develop a slightly different expression of the polar of conv(PI) using a linear program-

ming point a view. Recall that

PI := {(x, s) ∈ Z2 × Rn+ : x = f +Rs}.
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By definition, an inequality of the form αT s ≥ 1 is valid for PI if αT s ≥ 1 for all (x, s) ∈ PI . Equivalently,

αT s ≥ 1 is valid for PI if αT s ≥ 1 for every vertex (x, s) of conv(PI). From this, we can directly write

down the polar Q of conv(PI) as

Q = {α ∈ Rn+ : αT s ≥ 1, for all (x, s) vertex of conv(PI)} (2.13)

and separation of (x̄, s̄) is operated by means of

min s̄Tα

s.t. sTα ≥ 1, for all (x, s) vertex of conv(PI).
(2.14)

By expliciting the expression of PI and using Lemma 2 to characterize the vertices of conv(PI), we get

min s̄Tα

s.t. sTα ≥ 1, for all x ∈ X , for all s ∈ Rn+ such that x = f +Rs,

α ∈ Rn+

(2.15)

where X =
⋃
i,j∈N Xij . Note that α ≥ 0 comes from the expression (2.12) of Q where we can see that

Q ⊆ Rn+. In general, in a set of constraints aTx ≥ b for all a ∈ G, we can replace the left-hand side by an

optimization problem and obtain a single constraint min{aTx : a ∈ G} ≥ b. We do this with the “for all

s” part of the constraint of (2.15) in order to obtain a linear programming problem in the left-hand side.

min s̄Tα

s.t.

 min αT s

s.t. Rs = x− f
s ∈ Rn+

 ≥ 1, for all x ∈ X
(2.16)

This type of bilevel optimization problem is particularly hard to tackle in practice. However, since the

inner problem is linear and we only use its optimal objective function value, we have by strong duality

that  min αT s

s.t. Rs = x− f
s ∈ Rn+

 =

 max (x− f)T p

s.t. RT p ≤ α
p ∈ R2


(see e.g. [21] for more details on linear programming duality), yielding

min s̄Tα

s.t.

 max (x− f)T p

s.t. RT p ≤ α
p ∈ R2

 ≥ 1, for all x ∈ X .
(2.17)

Again, in general, a constraint having an optimization problem in the left-hand side max{aTx : a ∈ G} ≥ b
can be transformed into an existence condition ∃a ∈ G : aTx ≥ b. Applying this to (2.17), we obtain

min s̄Tα

s.t. (x− f)T px ≥ 1 for all x ∈ X
−α+RT px ≤ 0 for all x ∈ X
px ∈ R2 for all x ∈ X

(2.18)
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We now compare the expressions (2.12) and (2.18) of the separation problem. The optimization prob-

lem (2.12) has n variables, and
∑
ij∈N |Xij | constraints. The problem (2.18) on the other hand has

n + 2|X | variables and (n + 1)|X | constraints. As X =
⋃
i,j∈N Xij , it appears natural for (2.18) to be

more complex in general.

But if n is large, since X ⊂ Z2 is in a low-dimensional space,
∑
ij∈N |Xij | may very well be much larger

than (n+1)|X |. Furthermore, in the fairly common case where the basic variables are {0, 1}-constrained,

PB = {(x, s) ∈ {0, 1}2 × Rn+ : x = f +Rs},

then we only need to consider the four points {(0, 0), (0, 1), (1, 0), (1, 1)} in X . In that case, (2.18) will

always have at most n+ 8 variables and 4n+ 4 constraints.

However, the main advantage of (2.18) resides in the fact that its underlying reasoning can be extended

to models stronger than PI , like

PIU = {(x, s) ∈ Z2 × Rn+ : x = f +Rs, s ≤ U}

where we have upper bounds on the continuous variables. We easily obtain the separation problem

min s̄Tα

s.t. (x− f)T px + UT qx ≥ 1 for all x ∈ X
−α+RT px + qx ≤ 0 for all x ∈ X
px ∈ R2 for all x ∈ X
qx ∈ Rn, qx ≤ 0 for all x ∈ X

(2.19)

for PIU . The problem (2.19) has n + (2 + n)|X | variables and (n + 1)|X | constraints. The idea can be

taken further considering the k-row problem

PC =
{

(x, s) ∈ X × Rn+ : Axx+Ass = b
}

where X ⊆ Zm. The resulting separation problem is

min s̄Tα

s.t. (b−Axx)T px ≥ 1 for all x ∈ X
−α+ATs px ≤ 0 for all x ∈ X
px ∈ Rk for all x ∈ X.

(2.20)

In this case the number k of rows of [Ax|As] can be greater than the number m of integer-constrained

variables. We are thus no longer in the context of intersection cuts. Assuming that |X| is finite, the linear

program (2.20) has a block-angular structure, where each block correspond to one value of x. Furthermore,

it corresponds to the cut-generating linear program (CGLP) of the lift-and-project method of Balas, Ceria

and Cornuéjols [11] for a multiple-term disjunction. Adopting Balas’ disjunctive notation [8],

PC =
∨
x̄∈X

{
(x̄, s) ∈ Zm × Rn+ : Axx̄+Ass = b

}
and (2.20) is the so-called reverse polar of conv(PC) [8, 14]. Note that for m = 1 and |X| = 2, Balas

and Perregaard [15] characterized the bases of (2.20) in terms of the bases of the linear relaxation of PC ,

providing an extremely fast way of separating facet-defining inequalities of PC . We refer to [14] for a

survey of the disjunctive approach and the lift-and-project method.
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2.6 Summary

In Section 2.2, we characterized the polyhedral structure of conv(PI) in terms of its vertices and extreme

rays. This characterization let us write down an exact expression of its polar in Section 2.3. And we

showed in Section 2.4 how we could use the polar to separate valid inequalities for conv(PI). This lays the

foundations for the fast separation algorithm that we will develop in Chapter 3. Finally, in Section 2.5, we

establish the connection between a slightly different expression of the polar and the concepts used in the

lift-and-project method, offering some theoretical insight on the links with that separation technique.





Chapter 3

Separation of two-row cuts

In this chapter, we tackle the separation of facet-defining inequalities for the two-row model

PI = {(x, s) ∈ Z2 × Rn+ : x = f +Rs}

from a computational point of view.

It is not the first body of work addressing this issue. Espinoza [39] performed some of the first computa-

tional experiments with multi-row cutting planes. His approach is to separate intersection cuts from fixed

lattice-free polyhedra, and it is not limited to the two-row case. More precisely, he uses three families

of maximal lattice-free polyhedra in Rm. This is very natural in the context of the continuous infinite

relaxation

Rf := {(x, s) ∈ Zm × R∞+ : x = f +
∑
r∈Rm

rsr, s has a finite support}

of PI . Indeed, Borozan and Cornuéjols [25] showed that all undominated valid inequalities of Rf are

intersection cuts from maximal lattice-free polyhedra in Rm.

More recently, Dey, Lodi, Tramontani and Wolsey [34] and Basu, Bonami, Cornuéjols and Margot [18] also

tackled the question, both focusing on parametric Type-2 lattice-free triangles in R2 (see Proposition 5).

The precise shape of the triangle is determined by a heuristic procedure in [34], and [18] concentrates on

the case where one of the two components of f is integral, a common situation when the LP relaxation

of the problem features primal degeneracy.

One important advantage of the methods developed in [39, 34, 18] is that they enable the computation

of a multi-row cut in closed form, hence extremely quickly. However, they do not guarantee that they

generate the strongest or most violated cut for PI . In particular, the information that is lost by taking

the continuous infinite relaxation of PI can be illustrated quite intuitively. Figure 3.1a shows a maximal

lattice-free triangle Bψ containing f in its interior. Because that triangle is maximal, the intersection cut

derived from it is an undominated valid inequality
∑
r∈R2 ψ(r)sr ≥ 1 for Rf (ψ : R2 → R+ is a so-called

minimal valid function). But when taking into account the geometry of PI , i.e. the specific values of the

columns rj of R, we see that we could generate the exact same valid inequality with the lattice-free triangle

Lα pictured on Figure 3.1b. The latter is not maximal, showing that the corresponding intersection cut
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a b c

Figure 3.1: Bψ and Lα

αT s ≥ 1, with αj = ψ(rj) is not facet-defining of conv(PI). In this case, Lα is strictly included in the

interior of a lattice-free triangle Lα′ pictured in Figure 3.1c, which yields a strictly stronger intersection

cut α′T s ≥ 1.

Instead, we establish a method for separating maximally-violated intersection cuts that are facet-defining

for conv(PI). Our method is based on the polar

Q =
{
α ∈ Rn+ : sxi,jαi + sxj,iαj ≥ 1, ∀i, j ∈ N, ∀x ∈ Xij

}
of conv(PI) developed in Section 2.4 (recall that we define sxi,j and sxj,i to be such that x = f+sxi,jr

i+sxj,ir
j ,

and similarly λji,k and λjk,i to be such that rj = λji,kr
i + λjk,ir

k). Andersen, Louveaux, Weismantel and

Wolsey [3] showed that one can compute the vertices Xij of the integer hull of a cone Cij in R2 in

polynomial time, yielding a polynomial-time separation problem for conv(PI): min{cTα : α ∈ Q}.
However, we will see in Section 3.2 that there are significant hurdles to implement the method proposed

in [3], which could make it slow in practice.

There are two main results in this chapter. The first result is to show that the complexity of the polar can

be reduced from a quadratic to a linear (in n) number of integer hull computations in order to perform

an exact separation. The second result is to provide an algorithm that avoids computing explicitly all

integer hulls and hence to obtain a method that runs quickly in practice despite having no guaranteed

polynomial running time.

The works presented in this chapter have been published in [59].

3.1 A compact representation of the polar of conv(PI)

While it is possible to solve the separation problem by optimizing over the polar Q of conv(PI), we

present an alternative, more compact formulation Q. Indeed, to set up Q, we need to consider every pair

(ri, rj) of rays and compute the vertices of the integer hull of the cone Cij that they define (i.e. the set

Xij). Every such vertex (every point in every Xij) generates one constraint of Q. On the other hand, we

construct Q by considering only pairs of consecutive rays (ri, ri+1) and their respective Xi,i+1, plus at
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Figure 3.2: Kα is lattice-free while Lα is not Figure 3.3: Both Lα and Kα are lattice-free, but
Kα is not convex

most n constraints linking the α coefficients for triples of consecutive rays. More precisely, we consider

the set

Q = {α ∈ Rn+ : sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Xi,i+1, (3.1)

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) }, (3.2)

where the rays are indexed in counter-clockwise order, and modulo n (e.g. r−1 ≡ rn−1). As mentioned

in Section 2.2, we assume without loss of generality that no two vectors ri, rj are parallel with the same

direction. Observe that the set Q is described by
∑n−1
i=0

∑n−1
j=i+1 |Xij | constraints while Q features at most

n+
∑n−1
i=0 |Xi,i+1| constraints. Theorem 3 shows that optimizing over Q can be done through optimizing

over Q.

Theorem 3. Let c ∈ Rn, c > 0, the problem min{cTα : α ∈ Q} and the problem min{cTα : α ∈ Q}
share the same set of optimal solutions.

Before proving Theorem 3 let us develop some geometric interpretation of its result. We already defined

Lα as

Lα := {x ∈ R2 : there exists s ∈ Rn+ such that x = f +Rs and αT s ≤ 1}.

To simplify the discussion, we assume for the time being that α > 0, which implies that Lα is bounded,

and that cone{ri : i ∈ N} = R2, so f is in the interior of Lα. Let vi be the intersection of the boundary

of Lα with the half line f + cone(ri). By Theorem 1, vi = f + 1
αi
ri, and Lα = conv({v0, . . . , vn−1}). The

geometric intuition behind the constraints of Q is that stating α ∈ Q is equivalent to stating that Lα is

lattice-free. Instead, if we want α ∈ Q, we first consider only the constraints of Q that correspond to cones

formed with consecutive rays. In other words, we state that Kα :=
⋃
i conv({f, vi, vi+1}) is lattice-free

(Figure 3.2). Note that Kα is not necessarily convex; but we can observe that if it is, then Lα = Kα.

This motivates the inclusion of the n additional constraints (3.2) in Q, which enforce the convexity of Kα.

Indeed, for Kα to be nonconvex, there must exist two consecutive triangles whose union is nonconvex,

like conv({f, v0, v1}) and conv({f, v1, v2}) in Figure 3.2. The n additional constraints enforce that any

vi must be farther from f than the point in the line segment joining vi−1 and vi+1 along the half line
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f + cone(ri). In the presence of such constraints, we miss some valid solutions α ∈ Q, i.e. those which

correspond to a nonconvex Kα (Figure 3.3). However, in every such solution, there is one vi = f + ri/αi

in the interior of Lα, and the cut can be trivially strengthened by decreasing αi until vi is on the border

of Lα.

We prove Theorem 3 by showing that Q is a subset of Q (Lemma 4) and that every optimal solution to

min{cTα : α ∈ Q}, is feasible for Q (Lemma 5). First, we need the following result which shows that

when (3.2) holds, a similar constraint also holds for non-consecutive rays contained in the same cone. In

other words, it is sufficient to impose convexity constraints on consecutive triangles of Kα in order to

obtain convexity of Kα.

Lemma 3. If, for all j such that rj ∈ cone(rj−1, rj+1),

αj ≤ λjj−1,j+1αj−1 + λjj+1,j−1αj+1,

then for all i, j, k such that rj ∈ cone(ri, rk),

αj ≤ λji,kαi + λjk,iαk.

Proof. We prove it by induction on p := k − i (mod n). If p = 0, p = 1 or p = 2, the result is true by

hypothesis. We now prove that

if ∀i, j, l : 2 ≤ l − i < p (mod n) and rj ∈ cone(ri, rl), αj ≤ λji,lαi + λjl,iαl

then ∀i, j, l : l − i = p (mod n) and rj ∈ cone(ri, rl), αj ≤ λji,lαi + λjl,iαl.

Let j, k be such that rj , rk /∈ {ri, rl}, rj 6= rk and rj , rk ∈ cone(ri, rl). Without loss of generality, we can

assume that rj ∈ cone(ri, rk) and rk ∈ cone(rj , rl), i.e.

rj = λji,kr
i + λjk,ir

k (3.3)

rk = λkj,lr
j + λkl,jr

l (3.4)

λji,k, λ
j
k,i, λ

k
j,l, λ

k
l,j ≥ 0 (3.5)

hence, using (3.4) in (3.3),

rj = λji,kr
i + λjk,i(λ

k
j,lr

j + λkl,jr
l)

(1− λjk,iλ
k
j,l)r

j = λji,kr
i + λjk,iλ

k
l,jr

l.

This describes rj in terms of ri and rl, giving, by definition of the λ symbols (Definition 25),

λji,l =
λji,k

1−λjk,iλ
k
j,l

, λjl,i =
λjk,iλ

k
l,j

1−λjk,iλ
k
j,l

(3.6)

and this is well defined because rj ∈ cone(ri, rl).

Since the rays are ordered, rk 6= rl and rk ∈ cone(ri, rl), we know that k − i < p (mod n). Similarly,

l − j < p (mod n). Therefore, we can write, using the induction hypothesis,

αj ≤ λji,kαi + λjk,iαk (3.7)
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αk ≤ λkj,lαj + λkl,jαl (3.8)

hence, replacing αk in (3.7) by the right-hand side of (3.8) and given that λjk,i ≥ 0 in (3.5), we obtain

the new inequality

αj ≤ λji,kαi + λjk,i(λ
k
j,lαj + λkl,jαl)

which can be rewritten as

(1− λjk,iλ
k
j,l)αj ≤ λ

j
i,kαi + λjk,iλ

k
l,jαl.

Since λji,l, λ
j
l,i ≥ 0, given their expression in (3.6), we know that (1− λjk,iλkj,l) ≥ 0 and

αj ≤
λji,k

1− λjk,iλkj,l
αi +

λjk,iλ
k
l,j

1− λjk,iλkj,l
αl

or equivalently, using again the expressions in (3.6),

αj ≤ λji,lαi + λjl,iαl.

We can prove similarly that αk ≤ λki,lαi + λkl,iαl which concludes the induction for l − i = p.

Lemma 4. Q is a subset of Q.

Proof. Consider α ∈ Rn+ such that α ∈ Q. Some constraints of Q do not belong to the description of Q.

We must prove that they are satisfied. Let x ∈ Cij with j = i + 1 (mod n). We consider all h, k such

that x ∈ Chk. Obviously, Cij ⊆ Chk, thus ri, rj ∈ cone(rh, rk). In particular, using Lemma 3, we have

αi ≤ λih,kαh + λik,hαk (3.9)

αj ≤ λjh,kαh + λjk,hαk. (3.10)

Using the description of Q, we also have

sxi,jαi + sxj,iαj ≥ 1. (3.11)

We now need to prove that sxh,kαh + sxk,hαk ≥ 1.

Using Definition 24, we can express x in terms of f , ri, rj . And since ri, rj ∈ cone(rh, rk), we can use

Definition 25 to express them in terms of rh, rk:

x = f + sxi,jr
i + sxj,ir

j (3.12)

ri = λih,kr
h + λik,hr

k (3.13)

rj = λjh,kr
h + λjk,hr

k (3.14)

hence, using (3.13)-(3.14) in (3.12),

x = f + (sxi,jλ
i
h,k + sxj,iλ

j
h,k) rh + (sxi,jλ

i
k,h + sxj,iλ

j
k,h) rk

which gives an expression of x in terms of rh and rk. Therefore, by Definition 24, sxh,k = sxi,jλ
i
h,k + sxj,iλ

j
h,k

sxk,h = sxi,jλ
i
k,h + sxj,iλ

j
k,h

. (3.15)
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Using (3.9)-(3.10) in (3.11), since sxi,j , s
x
j,i ≥ 0, we obtain

sxi,j(λ
i
h,kαh + λik,hαk) + sxj,i(λ

j
h,kαh + λjk,hαk) ≥ 1

(sxi,jλ
i
h,k + sxj,iλ

j
h,k) αh + (sxi,jλ

i
k,h + sxj,iλ

j
k,h) αk ≥ 1

which, given (3.15), is equivalent to sxh,kαh + sxk,hαk ≥ 1

Lemma 5. If c > 0, all optimal solutions to min{cTα : α ∈ Q} are feasible for Q.

Proof. Let α∗ ∈ Q\Q. We want to prove that α∗ is not an optimal solution to min{cTα : α ∈ Q}. Since

α∗ /∈ Q, at least one constraint of Q that is not in Q must be violated by α∗, i.e. there exists i such that

ri ∈ cone(ri−1, ri+1) and α∗i > λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1

Consider α′ such that

α′j =

 α∗j , j 6= i

λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1, j = i.

(3.16)

We claim that α′ ∈ Q. First, trivially, for all j, k 6= i and x ∈ Xjk,

sxj,kα
′
j + sxk,jα

′
k ≥ 1. (3.17)

Then, for all k and x ∈ Xik, from Definition 24 and Definition 25, we have

x = f + sxi,k r
i + sxk,i r

k

ri = λii−1,i+1r
i−1 + λii+1,i−1r

i+1

with sxi,k, s
x
k,i, λ

i
i−1,i+1, λ

i
i+1,i−1 ≥ 0, hence

x = f + sxi,kλ
i
i−1,i+1r

i−1 + sxi,kλ
i
i+1,i−1r

i+1 + sxk,ir
k

is a valid representation of x. Thus (x, sxi,kλ
i
i−1,i+1ei−1 +sxi,kλ

i
i+1,i−1ei+1 +sxk,iek) ∈ PI and since α∗ ∈ Q,

it must satisfy

sxi,kλ
i
i−1,i+1α

∗
i−1 + sxi,kλ

i
i+1,i−1α

∗
i+1 + sxk,iα

∗
k ≥ 1

sxi,k(λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1) + sxk,iα

∗
k ≥ 1

sxi,kα
′
i + sxk,iα

′
k ≥ 1, (3.18)

the third inequality being obtained because of the construction of α′ in (3.16). Together, (3.17) and

(3.18) prove that α′ ∈ Q. By construction, cTα′ < cTα∗, if c > 0. Therefore α∗ is not optimal.

As a byproduct, the proof of Lemma 5 shows that independently of the objective function c, given

α∗ ∈ Q\Q, there exists α′ ∈ Q which provides coefficients for a cut that strictly dominates the one based

on α∗. This is the reason for requiring c > 0.

Proof of Theorem 3. Lemma 5 shows that all optimal solutions to min{cTα : α ∈ Q} are feasible for Q.

Since Q ⊆ Q (Lemma 4), they correspond to the set of optimal solutions to min{cTα : α ∈ Q}.
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Corollary 2. All vertices of Q are vertices of Q.

Proof. For any vertex α∗ of Q, there must exist an objective function c̄ such that α∗ is the unique optimal

solution to min{c̄Tα : α ∈ Q}. For any c such that ci < 0, the problem is unbounded. For any c such

that ci = 0, the optimal solution is not unique. Therefore, all vertices of Q can be obtained by optimizing

over Q with a positive objective function, and Theorem 3 applies.

Theorem 3 does not provide a way to tackle the case where there are zero coefficients in the objective func-

tion c, which may be important since we typically want to separate points that contain zero components.

However, the following corollary holds for any c ≥ 0.

Corollary 3. Given c ≥ 0, any valid inequality αTx ≥ 1 for conv(PI) with α ∈ Q\Q is strictly dominated

by a valid inequality α̂Tx ≥ 1 with α̂ ∈ Q.

Proof. Observe that α can be expressed as α = α̂ + β̂ where α̂ is in the convex hull of the vertices of Q

(thus α̂ ∈ Q by Corollary 2) and β̂ is in the recession cone of Q. As the recession cone of Q is in Rn+, it

follows that β̂ ≥ 0, hence cT α̂ ≤ cTα. Since α /∈ Q, β̂ 6= 0. In other words, α̂ ≤ α and α̂j < αj for some

j.

3.2 Separation algorithm

Optimizing over the set Q developed above requires explicit knowledge of the sets Xi,i+1. More precisely,

we should compute, for every cone(ri, ri+1), the vertices of the convex hull of Z2 ∩ (f + cone(ri, ri+1)).

To each of them corresponds one linear constraint of Q. The number of such vertices is polynomial in

the encoding length of (ri, ri+1) [53], and a polynomial-time algorithm for computing them has been

presented in [3]. Note however that an important hurdle in implementing that algorithm is that one of

its step is the computation of a Hilbert basis of the cone Cij . Such computation is polynomial only in

the special case of a cone in R2, and to the best of our knowledge, the algorithms specific to that case

have never been implemented.

We adopt a fundamentally different approach that lets us avoid fully computing Xi,i+1 and considering one

linear constraint per point in Xi,i+1. In addition to being easier to implement, we will see in Section 3.3

that this approach lets us keep the linear program that we optimize over extremely small. In order to

do that, we relax the expression of Q, by considering constraints (3.1) only for x in small sets Si,i+1 ⊆
Ci,i+1∩Z2 instead of in Xi,i+1. Note that this is indeed a relaxation since the constraints that correspond

to points in (Ci,i+1 ∩Z2) \Xi,i+1 are redundant yet valid for Q. We denote this relaxation by Q(S) ⊇ Q,

where S = ∪iSi,i+1.

Q(S) = {α ∈ Rn+ : sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Si,i+1

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) }

We then follow a classic row-generation approach summarized in Algorithm 1. First, we initialize S to a

reasonable subset of ∪iXi,i+1. We then optimize over Q(S) and find a solution α. As Q(S) is a relaxation
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Initialization: S := S0

Step A: ᾱ := argmin{cTα : α ∈ Q(S)}

Step B: Look for x ∈ Z2 such that ᾱ /∈ Q(S ∪ {x})

If no such x exist
ᾱ is optimal for min{cTα : α ∈ Q}, terminate.

Otherwise
S := S ∪ {x}, go back to Step A.

Algorithm 1: Using Q(S) to optimize over Q

Input: S ⊂ Z2, ᾱ ∈ Q(S)

Step 1: Let T be the set of vertices of conv(S ∩ Lᾱ).
Check whether conv(T ) is lattice-free.

Step 2: Check whether there are integer points
in the relative interior of the edges of conv(T )
that are in the interior of Lᾱ.

Step 3: Assume ᾱ > 0.
Use Theorem 4 to check whether Lᾱ is lattice-free.

Algorithm 2: Oracle for finding integer points in the interior of Lᾱ

of Q, α may violate some constraints (3.1). If we find such a constraint, we add the corresponding point

x to S, and iterate. Otherwise, if no such constraint is violated, α is valid for Q and is thus the desired

optimal solution.

This scheme mainly relies on the fact that we possess an oracle that is able to find violated constraints

of Q, or prove that no such constraints exist. We describe such an oracle in this section. Note that

the complexity of the algorithm as it is stated here is undefined, as it depends on the output of the

oracle. Adopting a geometric perspective, we can restate the task of the oracle as follows: Given Q(S),

ᾱ := argmin{cTα : α ∈ Q(S)} and the polyhedron Lᾱ, find x ∈ Z2 ∩ interior(Lᾱ) or prove that no

such points exist. Barvinok [16] presented a polynomial-time algorithm that can solve this problem in

any fixed dimension d, with the vertices of Lᾱ as its only input. However, we proceed otherwise, taking

advantage of our specific two-dimensional setup and our knowledge of the set S. Our proposed oracle

can be summarized as described in Algorithm 2. We detail the procedure in the rest of this section.

Step 1. We define T ⊆ S to be the set of vertices of conv(S ∩Lᾱ). An example is shown on Figure 3.4.

After Step A, sxi,jᾱi+s
x
j,iᾱj ≥ 1 for all x ∈ S. Therefore, no such x lies in the interior of Lᾱ, and points in

T must be on the boundary of Lᾱ. We want to check whether conv(T ) is lattice-free. By triangularizing

conv(T ), the problem reduces to finding integer points on line segments and in the interior of triangles

with integer vertices (see e.g. [63] for related methods). Both can be solved by elementary modulo

calculus. In particular, the number of integer points in the interior of a triangle conv({0, u, v}), with

u, v ∈ Z2, follows directly from Pick’s formula (see for example [17])

Ninterior = 1 +
det([u|v])− gcd(u1, u2)− gcd(v1, v2)− gcd(v1 − u1, v2 − u2)

2
(3.19)
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Figure 3.4: T := vertices of conv(S ∩ Lᾱ)

Then, knowing that the triangle contains integral points, we find them using the following procedure: If

there are lattice points in the relative interior of two or three edges, we construct an integral point using

integer combinations of these. This point is in the interior of conv(T ) except when there is exactly one

lattice point in the relative interior of each edge, in which case we divide conv(T ) in the 4 sub-triangles

they define, and proceed with one of these sub-triangles, as they all contain the same number of integer

points in their interior. Otherwise, at least two edges contain no lattice points in their relative interior,

and we make use of Lemma 6.

Lemma 6. Let ∆ be a triangle with integer vertices {0, u, v} that has interior lattice points and such

that gcd(u1, u2) = gcd(v1, v2) = 1. ∆ has an interior lattice point w such that w = 1
det([u|v])u+ kv

det([u|v])v

with kv ∈ Z+.

Proof. Any point w in Z2 can be expressed as w = βuu+ βvv, with(
βu

βv

)
=

[
u1 v1

u2 v2

]−1(
w1

w2

)
.

By explicitly developing the matrix inverse, we get βu = ku(w)
det([u|v]) and βv = kv(w)

det([u|v]) , with ku(w) :=

w1v2 − w2v1 and kv(w) := u1w2 − u2w1. Note that ku(w) and kv(w) are the components of w in

the coordinate system defined by u and v, multiplied by det([u|v]), and are thus integral as long as

w is integer. We are looking for a point w in the interior of ∆, i.e. such that ku(w), kv(w) ≥ 1 and

ku(w)+kv(w) ≤ det([u|v])−1. The claim in this Lemma is that such a point exists even when ku(w) is fixed

to 1. We now consider ku(w) = 1 as a Diophantine equation with variables w1, w2, i.e. w1v2 −w2v1 = 1.

Since gcd(v2,−v1) = 1, there exist w̄1, w̄2 ∈ Z such that ku(w̄) = 1, and we could find the value of w̄ using

the Euclidian algorithm. If 1 ≤ kv(w̄) ≤ det([u|v]) − 2, then w̄ is an interior lattice point. Otherwise,

we build the integer point w′ = w̄ + λv, with λ = −bkv(w̄)/det([u|v])c. Observe that ku(w′) = 1

and kv(w
′) ∈ {0, 1, . . . ,det([u|v]) − 1}. The point w′ has the desired form and is in the interior of the

triangle ∆ unless kv(w
′) = 0 or kv(w

′) = det([u|v]) − 1. The first case, kv(w
′) = 0, is impossible since

the segment (0, u) does not have lattice points in its relative interior. In the second case, we note that
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w′ = 1
det([u|v])u + det([u|v])−1

det([u|v]) v ∈ Z2. By hypothesis, there exists an integer point in the interior of ∆.

Let ŵ = ku(ŵ)
det([u|v])u + kv(ŵ)

det([u|v])v be such a point. We know that ku(ŵ), kv(ŵ) ≥ 1 and ku(ŵ) + kv(ŵ) <

det([u|v])). Finally, we build a second point w′′ = ŵ+ (ku(ŵ)− 1)(v−w′) = 1
det([u|v])u+ ku(ŵ)+kv(ŵ)−1

det([u|v]) v,

which proves the claim.

Lemma 6 allows us to find an integer point w = 1
det([u|v])u+ kv

det([u|v])v in the interior of ∆ by solving the

Diophantine system {
u1 + kvv1 = k1 det([u|v])

u2 + kvv2 = k2 det([u|v])
, kv, k1, k2 ∈ Z

for kv, choosing the smallest positive solution. This can be done either by three applications of the

Euclidean algorithm or by using the Hermite normal form of the system. In both cases, finding the

smallest positive solution is easy as the set of solutions is a one-dimensional translated lattice.

Step 2. We now assume that conv(T ) is lattice-free, and we check that the relative interior of its edges

does not contain integer points that are in the interior of Lᾱ. Note that since Lᾱ is convex, it is enough

to check one integer point in the relative interior of each edge of conv(T ).

Step 3. We now assume that no integer point was found in the interior of Lᾱ through Steps 1 and 2.

Moreover, we assume that ᾱi > 0 for all i, hence Lᾱ is a polytope; we show in Section 3.3 how we proceed

if this assumption is not true. We start by showing that Lᾱ is tight at three affinely independent points

in S, or in other words that conv(T ) = conv(S ∩ Lᾱ) is full-dimensional.

Lemma 7. Let ᾱ be a vertex of Q(S). If cone(r1, . . . , rn) = R2 and ᾱ > 0, then S ∩ Lᾱ contains three

affinely independent points.

Proof. Note that we can assume wlog that for every x ∈ S there exists a unique i such that x ∈ Si,i+1.

Consider now the constraints defining the set Q(S).

sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Si,i+1 (3.20)

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) (3.21)

αi ≥ 0 ∀i (3.22)

There are |S| constraints of type (3.20), n of type (3.21), and n of type (3.22), of which a subset of n

linearly independent overall must be tight at ᾱ. Because ᾱ > 0, none of the nonnegativity constraints

are tight for ᾱ. Now observe that vi is a vertex of Lᾱ only if it is not on aff(vi−1, vi+1). In other words,

only if ᾱi 6= λii−1,i+1ᾱi−1 + λii+1,i−1ᾱi+1, i.e. the associated constraint (3.21) is not tight.

Moreover, if cone(r1, . . . , rn) = R2, then f ∈ interior(Lᾱ). Therefore, Lᾱ is full-dimensional, and has at

least three vertices. This implies that at most n−3 of the constraints (3.21) are tight for ᾱ. Equivalently,

we have at least three tight constraints of type (3.20) for ᾱ. If the corresponding three integer points are

affinely independent, the result follows.

Suppose now that they are on a line. More specifically let W be a collinear set of such tight points, i.e.

W ⊆ S ∩ boundary(Lᾱ) such that |W | ≥ 3 and dim(aff(W )) = 1. Since Lᾱ is convex, all points in W
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must belong to a single facet conv(vi, vj) of Lᾱ. Now let us define K as the index set of the rays inside

the corresponding cone, i.e. K := {k : rk ∈ cone(ri, rj)}. Observe that there are at most |K| linearly

independent tight constraints including the variables with indices in K only. Thus, there must be at least

n− |K| linearly independent tight constraints including at least one of the n− |K| remaining variables.

For at least one of these remaining variables, the associated ray supports a vertex of Lᾱ, i.e. there exists

h /∈ K such that vh is a vertex of Lᾱ. Therefore, at least one of the n− |K| remaining constraints (3.21)

is not tight for ᾱ. It follows that there is at least one additional tight constraint (3.20), which does not

correspond to a point in W .

As suggested by Lemma 7, we ensure that we have three affinely independent points on the boundary of

Lᾱ by adding artificial rays to PI , as needed, in order to have R2-spanning rays. By using a zero objective

function cost for variables associated to artificial rays, we do not modify the separation problem. Observe

that since conv(T ) is a lattice-free polyhedron in R2 with integer vertices, we know that it has at most

four vertices [60], thus |T | may only be three or four, i.e. conv(T ) is a triangle or a qualidrateral.

Definition 28 summarizes the assumptions we can make in Step 3: we call (T, Lᾱ) checkable if we found

integer points in the interior of Lᾱ neither in Step 1 nor in Step 2.

Definition 28. We call a couple (T, Lᾱ) checkable if

(a) conv(T ) and Lᾱ are full-dimensional convex polytopes in R2,

(b) the vertices of conv(T ) are integral and belong to the boundary of Lᾱ,

(c) conv(T ) is lattice-free,

(d) the integer points in the relative interior of the edges of conv(T ) do not belong to the interior of Lᾱ.

We showed previously that it is easy to verify whether (T, Lᾱ) is checkable. In the remainder of this

section, we show that it is computationally cheap to check whether Lᾱ is lattice-free when (T, Lᾱ) is

checkable. Lemma 8, 9, 10 and 11 cover the four possible cases.

Lemma 8. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free triangle with exactly one integer point

in the relative interior of each edge. Then Lᾱ is lattice-free.

Proof. conv(T ) is a maximal lattice-free body. Therefore, Lᾱ ⊇ conv(T ) is lattice-free if and only if

Lᾱ = conv(T ). Since the integer points on the edges of conv(T ) are not in the interior of Lᾱ, they are

on its boundary, so Lᾱ = conv(T ).

Lemma 9. Let (T, Lᾱ) be checkable and conv(T ) be a triangle with vertices D, D + u, D + v such that

det([u|v]) = 1. Then Lᾱ is lattice-free if and only if Lᾱ contains neither D + u + v nor D + u − v nor

D + v − u in its interior.
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Figure 3.5: One lattice point in the relative inte-
rior of each edge of conv(T ) (Lemma 8)

Figure 3.6: conv(T ) is a unimodular triangle
(Lemma 9)

Figure 3.7: One or more lattice points in the rel-
ative interior of one edge of conv(T ) (Lemma 10)

Figure 3.8: conv(T ) is a quadrilateral
(Lemma 11)

Figure 3.9: The half-plane H in the proof of Lemma 9
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Figure 3.10: w′ in Lemma 10

Proof. Let H be the half-plane delimited by the line (D + u,D + v) not containing D (see Figure 3.9).

We first consider the vertices of Lᾱ that lie in H. Observe that by convexity, they must belong to D +

cone(u, v), otherwise D+u or D+v would belong to the interior of Lᾱ. Since (u, v) is an integral basis of

Z2, there is no integer point in the interior of conv({D,D+v})+cone({u}) or conv({D,D+u})+cone({v}).
Hence, if the vertices of Lᾱ all lie in conv({D,D+v})+cone({u}) or all lie in conv({D,D+u})+cone({v}),
then Lᾱ ∩H is lattice-free. Otherwise, D+ u+ v is in the interior of Lᾱ. By symmetry for the two other

half-planes, the result follows.

Lemma 10. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free triangle with vertices D, D+u, D+v

such that gcd(u1, u2) = gcd(v1, v2) = 1 and gcd(w1, w2) 6= 1, with w = v − u. Then Lᾱ is lattice-free if

and only if Lᾱ contains neither D + w′ nor D − w′ in its interior, with w′ = w
gcd(w1,w2) .

Proof. By convexity, the point D+u+w′ belongs to Lᾱ, but since it is in the relative interior of an edge

of conv(T ), it is not in the interior of Lᾱ. Thus, D + u + w′ is on the boundary of Lᾱ and we consider

the triangle conv({D,D+u,D+u+w′}). By (3.19), det([−u,w′]) = 1 and Lemma 9 applies. Therefore,

in that case, Lᾱ is lattice-free if and only if D + w′, D − w′ and D + 2u + w′ do not lie in its interior.

Note that since the line (D + u,D + v) is a facet of Lᾱ, D + 2u+ w′ can not be in Lᾱ.

Lemma 11. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free quadrilateral. Then Lᾱ is lattice-free.

Proof. As for Lemma 10, we can decompose conv(T ) in unimodular triangles (Figure 3.11) and apply

Lemma 9 on one of them. The vertices of this unimodular triangle can be vertices of conv(T ) or integer

points in the relative interior of the edges of conv(T ), belonging in both cases to the boundary of Lᾱ.

One can easily see that the integer points to be verified in Lemma 9 are either on the edges of conv(T )

or trivially not in the interior of Lᾱ, by convexity.

Theorem 4. Let (T, Lᾱ) be checkable and conv(T ) be a 2-dimensional convex polytope of which D, D+u

and D + v are three vertices. Then Lᾱ is lattice-free if and only if it contains neither D + u′ + v′ nor

D + u′ − v′ nor D + v′ − u′ in its interior, with u′ = u
gcd(u1,u2) and v′ = v

gcd(v1,v2) .
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Figure 3.11: Unimodular triangle decomposition in Lemma 11

Proof. This follows from Lemma 8, 9, 10 and 11.

The results in this section show that, in Step 3, it is enough to check at most three integer points against

the interior of Lᾱ to verify that Lᾱ is lattice-free.

3.3 Computations

In this section, we present an implementation of the two-row cut separator described previously and

computational results obtained with it. First, we need to address an issue that was not covered before.

Handling of the case αi = 0. So far, we have only considered the case where Lᾱ is a polytope, i.e.

ᾱi > 0 for all i, while the constraints of Q(S) only ensure ᾱi ≥ 0. Note that if Lᾱ is lattice-free and

unbounded, then it is necessarily a split set. If only one coefficient ᾱh is zero, then we can check that

Lᾱ is inscribed in a split set parallel to rh. If two such coefficients ᾱj and ᾱk are zero, then Lᾱ is not

lattice-free and we can easily construct an integer point f + µjr
j + µkr

k in its interior. However, both

these operations involve computing a rational representation of the rays ri and the point f , which are

usually only available in floating-point form. Besides numerical difficulties, this could yield points with

large coefficients, and that are very “far” from f . Recall that when we find points in Z2 ∩ interior(Lᾱ),

we add them to the set S, whose elements correspond to the constraints of Q that are considered in its

relaxation Q(S). In that context, large coefficients cause numerical instability, and points that are “far”

from f typically correspond to weak (i.e. dominated) constraints of Q.

We tackle this issue in a different way, by imposing positive lower bounds on α, thus ensuring that we

obtain a bounded polyhedron Lᾱ. This can yield problems in case some of these bounds end up tight in

ᾱ, as then the result of Lemma 7 is not guaranteed to hold, i.e. conv(T ) may not be full-dimensional.

If it is full-dimensional nevertheless, then Theorem 4 holds and we can still use the oracle described in

Algorithm 2. Otherwise, as mentioned earlier, we could fall back on verifying that Lᾱ is lattice-free

with the polynomial-time algorithm of Barvinok [16]. But for that case, we instead implement the naive
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enumeration that runs in w(Lᾱ) iterations, where

w(Lᾱ) = max{x1 : x ∈ Lᾱ} −min{x1 : x ∈ Lᾱ}.

This is not polynomial in the encoding length of Lᾱ, and potentially much more costly than Algorithm 2,

which is basically O(1) for fixed values of |S| and n. In practice however, it is possible to bound the

number of iterations by suitably choosing the value of the lower bounds on α, for instance αi ≥ |r
i|
K for

some K > 0. Since the vertices of Lᾱ are of the form vi = f + 1
ᾱi
ri, this ensures that Lᾱ is contained

in a disc of radius K centered at f , implying w(Lᾱ) ≤ 2K. In our implementation, K = 500. Note also

that if we fix the value of K, the complexity of Algorithm 1 becomes polynomial, as it performs at most

O(K2) iterations.

Remark that Lᾱ being lattice-free is enough for ᾱT s ≥ 1 to be a valid inequality for PI , but if some

components of ᾱ are at their positive lower bound, then ᾱT s ≥ 1 is not guaranteed to define a facet of

conv(PI), as the lower bounds on α are not actual constraints of the polar of conv(PI). For this reason,

whenever we generate a valid inequality having a coefficient αj at lower bound, we consider instead the

intersection cut corresponding to a split set of direction rj , i.e. the lattice-free body Lα = {x ∈ R2 :

bpT fc ≤ pTx ≤ dpT fe} where p ∈ Z2 is an integral vector orthogonal to rj . This is the only facet-defining

inequality for PI having αj = 0, and is hence a solution to min{s∗Tα : α ∈ Q} in this case, if K is

sufficiently large. The computation can fail since pT f may be integral, which is made more likely by the

fact that we must convert (approximately) a floating-point representation of rj into a rational in order

to compute p. If it fails for every such αj at lower bound, then we discard the current cut, so that we

return only facet-defining inequalities.

Computational experiment. Algorithm 3 summarizes the computational experiment performed in

order to measure the practical speed of our method. Given a mixed-integer problem, the algorithm

starts by optimizing over its linear relaxation. In the outer loop, we extract, from the simplex tableau

associated to the current optimal solution x∗, the two-row models to be used for cut generation. In the

inner loop, we separate one inequality with each model and add the cuts that separate x∗ to the linear

relaxation, over which we then reoptimize, yielding a new solution x∗. The inner loop terminates when

no more separating inequality is found. At that point, the next iteration of the outer loop will build

different models based on a new simplex tableau. Observe that at a given iteration of the outer loop, all

the generated inequalities are at most of rank r.

In order to compare two-row inequalities with their single-row counterpart, we compute the one-row

intersection cut associated to each row of the simplex tableau, at every outer loop iteration, before we

start separating two-row inequalities. These cuts are intersection cuts on a one-row relaxation of the

original problem, keeping the integrality constraint only for the corresponding basic variable (i.e. non-

lifted intersection cuts). Note that while much easier to compute, they are a subset of those we can obtain

with our two-row separator.

Although more sophisticated options exist (see e.g. [39, 34, 19, 18]), our method for building the two-row

models is essentially heuristic. We arbitrarily restrict ourselves to reading rows from optimal simplex

tableaux. Our intent is to build models whose constraints have similar supports, while covering all
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1 input: a mixed-integer problem P , its linear relaxation PLP
2
3 for r = 1 to RANK MAX (outer loop)
4 Optimize over PLP . Let x∗ be the optimal solution.
5 Compute the optimal simplex tableau.
6 Build up to MODELS MAX two-row models.
7
8 for each row of the simplex tableau,
9 generate the corresponding one-row intersection cut.

10 end for
11 Add the one-row cuts separating x∗ to PLP .
12
13 do (inner loop)
14 Optimize over PLP . Let x∗ be the optimal solution.
15
16 for each two-row model,
17 generate a cut, trying to separate x∗.
18 end for
19 Add the cuts separating x∗ to PLP .
20
21 while at least one cut was added.
22 end for

Algorithm 3: Computational experiment

relevant rows. Intuitively, this can be motivated by observing that any intersection cut generated from

a model whose two rows have disjoint support is equivalent to a linear combination of two intersection

cuts from the corresponding one-row models. In practice, we select up to MODELS MAX models meeting

the following requirements:

1. Each of the two rows is a suitable simplex tableau row, i.e.

a. its basic variable is integer-constrained,

b. its density, i.e. the ratio of the number of nonzero coefficients in the row over the number of

columns, does not exceed ROW DENSITY MAX.

2. Each of the two rows is used in at most (ROW USE MAX− 1) other selected models.

3. At least one of the two rows has a fractional right-hand side.

4. Among the models that are not selected, none has a higher score. The score of a two-row model is

computed as (c− d) where c is the number of colums having nonzero coefficients in both rows, and d

is the number of columns a having nonzero coefficient in exactly one row.

Results analysis. Tables 3.4 and 3.5 present the results of our experiment. The testbed is composed of

problems from the MIPLIB 3 [23] and MIPLIB 2003 [1] libraries. We report results on all the instances

except for three having no integrality gap (dsbmip, enigma, disctom), four whose optimal solution is

unknown (dano3mip, liu, momentum3, t1717), and five for which the experiment runs out of memory

(ds, momentum2, stp3d, mzzv42z, rd-rplusc-21). Tables 3.1 and 3.2 gather the characteristics of the
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rows columns integer binary continuous
10teams 230 2025 1800 all 225

air03 124 10757 10757 all 0
air04 823 8904 8904 all 0
air05 426 7195 7195 all 0

arki001 1048 1388 538 415 850
bell3a 123 133 71 39 62
bell5 91 104 58 30 46

blend2 274 353 264 231 89
cap6000 2176 6000 6000 all 0
danoint 664 521 56 all 465
dcmulti 290 548 75 all 473

egout 98 141 55 all 86
fast0507 507 63009 63009 all 0

fiber 363 1298 1254 all 44
fixnet6 478 878 378 all 500
flugpl 18 18 11 0 7

gen 780 870 150 144 726
gesa2 1392 1224 408 240 672

gesa2 o 1248 1224 720 336 504
gesa3 1368 1152 384 216 768

gesa3 o 1224 1152 672 336 480
gt2 29 188 188 24 0

harp2 112 2993 2993 all 0
khb05250 101 1350 24 all 1326
l152lav 97 1989 1989 all 0

lseu 28 89 89 all 0
misc03 96 160 159 all 1
misc06 820 1808 112 all 1696
misc07 212 260 259 all 1
mitre 2054 10724 10724 all 0

mod008 6 319 319 all 0
mod010 146 2655 2655 all 0
mod011 4480 10958 96 all 0

modglob 291 422 98 all 0
noswot 182 128 100 75 25

nw04 36 87482 87482 all 0
p0033 16 33 33 all 0
p0201 133 201 201 all 0
p0282 241 282 282 all 0
p0548 176 548 548 all 0
p2756 755 2756 2756 all 0

pk1 45 86 55 all 31
pp08a 136 240 64 all 176

pp08aCUTS 246 240 64 all 176
qiu 1192 840 48 all 792

qnet1 503 1541 1417 1288 124
qnet1 o 456 1541 1417 1288 124

rentacar 6803 9557 55 all 9502
rgn 24 180 100 all 80

rout 291 556 315 300 241
set1ch 492 712 240 all 472

seymour 4944 1372 1372 all 0
stein27 118 27 27 all 0
stein45 331 45 45 all 0

vpm1 234 378 168 all 210
vpm2 234 378 168 all 210

Table 3.1: Instance statistics (MIPLIB 3)

relevant instances. The general conditions of our experiments are detailed in Table 3.3. The columns

of Tables 3.4 and 3.5 are composed of two parts. The first one (one-row only) serves as a comparison

point using only one-row intersection cuts, i.e. split cuts from a simple disjunction on a basic variable

(MODELS MAX = 0, ROW USE MAX = 0). The column cuts indicates the number of separating one-row

intersection cuts and %gc is the percentage of integrality gap closed as a result. We compute gap closures

as

%gc = 100
zLP+cuts − zLP

zMIP − zLP

where zMIP is the optimal objective function value of the original problem, zLP the one of its LP relaxation,

and zLP+cuts the one of its LP relaxation with cuts added. The second part (one-row + two-row)
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rows columns integer binary continuous
a1c1s1 3312 3648 192 all 3456

aflow30a 479 842 421 all 421
aflow40b 1442 2728 1364 all 1364

atlanta-ip 21732 48738 46773 46667 1965
glass4 396 322 302 all 20

manna81 6480 3321 3321 18 0
momentum1 42680 5174 2349 all 2825
msc98-ip 15850 21143 20290 20237 853

mzzv11 9499 10240 10240 9989 0
net12 14021 14115 1603 all 12512

nsrand-ipx 735 6621 6620 all 1
opt1217 64 769 768 all 1

protfold 2112 1835 1835 all 0
roll3000 2295 1166 738 246 428

sp97ar 1761 14101 14101 all 0
timtab1 171 397 171 64 226
timtab2 294 675 294 113 381
tr12-30 750 1080 360 360 720

Table 3.2: Instance statistics (MIPLIB 2003, instances not included in MIPLIB 3)

CPU: Intel Core i7-990X at 3.47GHz, 6 cores, 12 threads
RAM: DDR3-1333 SDRAM (24Gb)

Compiler: GCC 4.6.3 20120306 (Red Hat 4.6.3-2)
Environment: GNU/Linux (Fedora 15), kernel 2.6.43.8-1.fc15.x86 64

Cut generation: Implemented in C++, single threaded
LP solver: IBM CPLEX 12.4 (C library API), 64 bits, single threaded

Table 3.3: Conditions of the experiments

corresponds to Algorithm 3 with MODELS MAX = 5000 and ROW USE MAX = 4, i.e. each row of the simplex

tableau is used to build at most 4 different two-row models. Note that we do not consider rows with more

than 40% nonzero components (ROW DENSITY MAX = 0.4). In both cases, we limit ourselves to rank-5

inequalities (RANK MAX = 5), and we discard cuts whose dynamism (i.e. the quotient of the largest and

the smallest nonzero coefficient, in absolute value) exceeds 106, as they are likely to cause numerical

difficulties. Moreover, we consider that a cut αTx ≥ 1 “separates” a point x∗ only if its violation at x∗

is at least 10−6 i.e. 1− αTx∗ ≥ 10−6. The column one-row cuts indicates the number of separating one-

row intersection cuts generated as part of Algorithm 3. In the subcategory two-row, models indicates the

overall number of times the two-row separation procedure is called, time shows the total time spent within

the algorithm, in seconds, and cuts indicates the number of two-row cuts that succeed at separating the

corresponding x∗. The set S in Algorithm 1 is initialized with the four points (bf1c, bf2c), (bf1c, df2e),
(df1e, bf2c) and (df1e, df2e), and +total denotes the total number times a point was added to a set S,

across all separations. Finally, %gc shows the percentage of gap closed by adding all the separating cuts.

The primary objective of our experiment is to assess whether our separator is fast in practice. In particu-

lar, since Algorithm 1 does not have a proven complexity bound, we need to evaluate how many iterations

it performs in a practical setting. Over the course of the experiment conducted to generate Table 3.4

and Table 3.5, only 10.4 points are added to S on average per call to the separator, in addition to the

four initial points, i.e. Algorithm 1 performs 11.4 iterations on average. On average, the computation

takes 20.5ms per call to the separator (1.8ms when considering MIPLIB 3 only). A cut is successfully

computed in 99.87% of the cases, failure happening when no facet-defining inequality could be generated

as explained above, and 1.39% of the generated cuts do separate the corresponding point x∗. Note that
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instance one-row only one-row + two-row
one-row two-row

cuts %gc cuts models +total time cuts %gc
10teams 699 0.00 699 286 267 0.179 0 0.00

air03 36 100.00 36 232 111 0.316 0 100.00
air04 1299 9.49 1299 0 0 0.000 0 9.49
air05 1051 6.32 1051 0 0 0.000 0 6.32

arki001 163 27.28 161 14592 72606 32.034 238 32.23
bell3a 71 69.56 71 3008 16994 3.614 430 68.25
bell5 115 26.23 90 1656 8678 1.403 25 23.08

blend2 46 21.61 66 12453 5988 4.357 203 26.73
cap6000 67 54.19 67 0 0 0.000 0 54.19
danoint 100 0.43 95 4657 68866 55.138 121 0.61
dcmulti 278 58.32 206 7052 16350 6.574 370 65.64

egout 79 69.81 47 1867 3781 0.908 244 93.37
fast0507 1662 3.10 1662 453 220 0.759 0 3.10

fiber 253 17.04 195 30092 84777 37.087 401 18.81
fixnet6 93 18.66 78 27487 18291 14.743 535 53.54
flugpl 43 14.22 38 540 1428 0.353 133 20.37

gen 211 61.19 224 7957 36457 10.054 366 63.66
gesa2 290 47.25 270 22181 34055 11.352 687 70.54

gesa2 o 398 47.13 380 52715 71444 29.022 960 67.23
gesa3 324 49.72 208 12012 65236 18.045 668 74.46

gesa3 o 421 67.36 358 39177 80491 27.407 1049 74.62
gt2 79 97.54 78 817 2807 0.485 20 99.00

harp2 130 11.85 133 6612 26458 6.808 264 18.53
khb05250 53 95.57 38 588 258 0.192 43 90.67
l152lav 326 15.20 326 0 0 0.000 0 15.20

lseu 80 38.00 93 722 3144 0.540 96 36.89
markshare1 29 0.00 29 0 0 0.000 0 0.00
markshare2 34 0.00 34 0 0 0.000 0 0.00

mas74 74 4.38 74 0 0 0.000 0 4.38
mas76 77 3.06 77 0 0 0.000 0 3.06

misc03 275 4.56 293 3330 1792 1.129 100 17.36
misc06 37 63.18 52 5383 2796 1.949 140 86.35
misc07 392 0.72 352 6980 13931 5.004 24 0.72
mitre 5631 83.93 5496 125000 826666 210.567 3141 84.45

mkc 725 39.40 788 130000 36106 51.893 676 26.31
mod008 33 11.22 33 0 0 0.000 0 11.22
mod010 258 57.73 256 140 24 0.085 2 58.84
mod011 22 6.87 21 6178 5629 2.869 52 12.41

modglob 50 28.72 42 2392 13963 2.754 122 48.41
noswot 163 0.00 119 3536 5176 1.112 167 0.00

nw04 76 17.95 76 0 0 0.000 0 17.95
p0033 34 12.77 57 1046 10709 1.681 76 57.01
p0201 325 25.93 383 1502 4121 1.131 116 45.17
p0282 182 16.03 247 21296 135084 34.065 100 13.54
p0548 300 50.83 367 17816 57142 15.693 261 66.53
p2756 264 0.89 374 39743 48256 18.420 201 42.12

pk1 68 0.00 68 0 0 0.000 0 0.00
pp08a 204 77.53 158 4048 7886 3.168 217 90.16

pp08acuts 99 47.14 148 5336 23651 8.664 238 60.23
qiu 116 3.05 92 1804 38900 30.450 88 4.64

qnet1 298 22.99 288 13592 18518 8.649 45 28.01
qnet1 o 152 47.84 125 12859 24792 7.785 121 51.54

rentacar 9 0.00 9 368 1254 5.036 0 0.00
rgn 72 0.00 72 385 110 0.123 47 0.00

rout 195 7.81 194 456 414 0.205 7 9.30
set1ch 464 80.71 304 16179 20079 6.433 543 94.14

seymour 22038 14.75 22167 45000 338910 652.530 12 15.01
stein27 452 0.00 437 3248 8342 2.595 18 0.00
stein45 1069 0.00 1089 30119 119287 33.615 268 0.00

swath 278 0.60 283 4320 9450 6.401 342 2.53
vpm1 87 27.29 115 10169 2079 2.192 130 51.69
vpm2 143 38.79 159 15165 18774 7.750 322 53.56

average 695.032 29.415 691.081 12492.677 38912.065 22.344 232.726 36.180

Table 3.4: Time and gap closed on MIPLIB 3
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instance one-row only one-row + two-row
one-row two-row

cuts %gc cuts models +total time cuts %gc
a1c1s1 278 36.35 219 11214 51555 12.391 529 43.86

aflow30a 154 19.99 170 9388 2211 3.455 92 21.73
aflow40b 169 11.52 179 52312 6659 22.780 112 14.30

atlanta-ip 9050 8.75 12993 120000 2936415 5566.283 446 8.75
glass4 108 0.00 178 3052 299 0.751 885 0.00

manna81 1980 100.00 1980 10000 503 3.316 0 100.00
momentum1 10043 61.03 15421 105000 5586289 3987.552 2471 57.56
msc98-ip 21799 53.94 25529 90000 823555 2052.142 308 53.95

mzzv11 18354 20.06 17285 90000 2976550 10139.824 709 20.16
net12 4180 9.25 4399 90928 845309 554.549 204 11.54

nsrand-ipx 1071 25.51 1292 44768 35315 39.955 363 29.59
opt1217 130 0.53 126 88 20 0.040 2 0.53

protfold 5651 18.24 5759 127651 145047 169.947 2006 13.65
roll3000 3158 67.18 2897 105000 957758 479.864 630 60.07

sp97ar 2585 10.79 2673 34004 11648 27.467 49 11.61
timtab1 555 27.20 353 12162 37555 18.771 676 47.84
timtab2 669 24.96 577 23686 155427 76.760 968 34.21
tr12-30 442 68.53 393 25800 302668 99.013 362 92.22
average 4465.3 31.32 5134.6 53058.5 826376.8 1291.9 600.7 34.53

Table 3.5: Time and gap closed on MIPLIB 2003 (instances not included in MIPLIB 3)

for being considered a separating cut, a valid inequality must also satisfy the condition on coefficient dy-

namism described previously. On the other hand, 86.61% of the generated one-row intersection cuts are

separating (in the same one-row + two-row experiment), with separation taking approximately 0.14ms on

average in our implementation. Recall however that two-row cuts are separated after one-row cuts, hence

every separating two-row cut is, in the separation sense, “stronger” than all the one-row cuts generated

before. Note finally that overall in our experiment, only 16.98% of the time is taken by the two-row

separator, the rest being spent optimizing over the LP relaxation, computing the optimal LP tableau,

and selecting pairs of rows.

The secondary objective of this experiment is to evaluate the usefulness of two-row cuts in a separation

scheme. In terms of average gap closed (35.81%, compared to 29.85% with one-row intersection cuts only),

the addition of two-row inequalities does seem to slightly strengthen the original formulation, without

however providing a compelling argument to justify their computational cost. But it should be noted that

on some instances (e.g. misc03, p0201, p0548, p2756, pp08a, qnet1, tr12-30), two-row cuts provide

a significant improvement in the LP bound, without the addition of a disproportionate number of cuts.

On a lot of other instances, the significant improvement brought by two-row cuts could be attributed to

their sheer number. Remark also that in some cases, the amount of gap closed by one-row + two-row is

smaller than with one-row only. This can happen since, as we do not limit ourselves to rank-1 cuts, the

bases (and hence the tableaux) used in the various experiments can differ, starting from the second outer

loop iteration.

Figure 3.12 illustrates the evolution of the average gap closed from one (outer loop) iteration to the next,

over both instance sets. The bars labeled one-row only and one-row + two-row correspond to the gap

closed after each iteration in their respective experiment. The one-row (+ two-row) bar corresponds to

the gap closed at each iteration of the one-row + two-row experiment before the addition of two-row

inequalities, i.e. at line 12 of Algorithm 3. Observe that while the difference between the two experiments

is noticeable, one-row cuts still seem to close most of the gap in the one-row + two-row experiment. This

might indicate that the main advantage provided by the two-row inequalities arises from obtaining useful
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Figure 3.12: Gap closed, for different values of r

relaxations from simplex bases that are not reached adding one-row cuts only.

In Table 3.6 and Table 3.7, we survey the lattice-free sets that we obtained throughout the experiment,

and classify them according to the taxonomy described in [37, 35]. We count only lattice-free sets

corresponding to separating two-row cuts. One can observe that no Type-1 triangle is generated, which

is worth noting as only cuts corresponding to Type-1 triangles have infinite split rank [4, 35]. This could

be caused by the fact that the set PI must take a very specific form in order for us to be able to build a

Type-1 triangle with each of its vertices on f + cone(ri) for some ray ri.

Split sets play a special role in the context of intersection cuts. In particular, any two-row intersection cut

from a split set can be obtained, at a fraction of the computational cost, as a one-row cut, by combining

the two initial rows. Such a cut is thus a rank-1 split cut (when constructing models from the initial LP

formulation). In order to evaluate the importance of these cuts, we re-ran the experiment, discarding all

two-row cuts except the ones arising from split sets. Therefore, this new experiment uses only split cuts of

rank at most 5. The results are shown in Table 3.8 and Table 3.9, under the column “+ two-row splits”.

It appears that intersection cuts on split sets alone can close most of the gap closed by all two-row cuts

together, going from 29.85% (one-row only) to 34.40% (+ two-row splits), instead of 35.81% (+ two-row

all). More importantly, they do so despite the addition of fewer cuts, 135 in average (+ two-row splits),

instead of 316 (+ two-row all).

3.4 Summary

In this chapter, we developed a compact formulation of the polar of the two-row model studied by

Andersen et al. [4], built an algorithm to separate two-row cuts using this formulation, and showed

computationally that it is fast in practice. As a result, we are able to generate separating two-row

intersection cuts without fixing the underlying lattice-free set within a few milliseconds of computing

time. We do not answer however the question of the practical usefulness of these cuts, as our experiments

show mixed results in this regard. More precisely, for the instances tested, two-row intersection cuts

close significantly more gap than one-row intersection cuts, but we can achieve almost as much when
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instance cuts T 1 T 2 T 3 Q1 Q2 split
10teams 0 0 0 0 0 0 0

air03 0 0 0 0 0 0 0
air04 0 0 0 0 0 0 0
air05 0 0 0 0 0 0 0

arki001 238 0 55 27 116 1 39
bell3a 430 0 100 16 211 0 103
bell5 25 0 5 0 9 0 11

blend2 203 0 61 24 101 3 14
cap6000 0 0 0 0 0 0 0
danoint 121 0 5 8 80 6 22
dcmulti 370 0 19 22 255 17 57

egout 244 0 41 12 71 6 114
fast0507 0 0 0 0 0 0 0

fiber 401 0 107 22 194 4 74
fixnet6 535 0 33 14 145 9 334
flugpl 133 0 33 5 84 3 8

gen 366 0 48 20 219 11 68
gesa2 687 0 125 24 483 14 41

gesa2 o 960 0 267 46 510 11 126
gesa3 668 0 104 22 445 17 80

gesa3 o 1049 0 89 36 840 7 77
gt2 20 0 1 0 10 0 9

harp2 264 0 65 18 156 2 23
khb05250 43 0 6 13 17 0 7
l152lav 0 0 0 0 0 0 0

lseu 96 0 47 5 35 3 6
markshare1 0 0 0 0 0 0 0
markshare2 0 0 0 0 0 0 0

mas74 0 0 0 0 0 0 0
mas76 0 0 0 0 0 0 0

misc03 100 0 9 0 47 0 44
misc06 140 0 24 9 86 0 21
misc07 24 0 3 0 5 0 16
mitre 3141 0 1135 77 1822 21 86

mkc 676 0 89 23 474 19 71
mod008 0 0 0 0 0 0 0
mod010 2 0 0 0 0 0 2
mod011 52 0 18 3 31 0 0

modglob 122 0 14 8 50 4 46
noswot 167 0 25 3 129 0 10

nw04 0 0 0 0 0 0 0
p0033 76 0 25 5 36 0 10
p0201 116 0 6 2 11 5 92
p0282 100 0 5 5 68 3 19
p0548 261 0 79 5 114 0 63
p2756 201 0 31 12 18 1 139

pk1 0 0 0 0 0 0 0
pp08a 217 0 29 37 84 10 57

pp08acuts 238 0 43 13 142 16 24
qiu 88 0 0 3 85 0 0

qnet1 45 0 6 0 29 1 9
qnet1 o 121 0 21 4 81 4 11

rentacar 0 0 0 0 0 0 0
rgn 47 0 0 7 3 1 36

rout 7 0 1 0 6 0 0
set1ch 543 0 137 125 205 10 66

seymour 12 0 3 0 3 0 6
stein27 18 0 11 0 4 1 2
stein45 268 0 27 5 182 23 31

swath 342 0 35 25 159 6 117
vpm1 130 0 38 9 37 7 39
vpm2 322 0 45 14 179 17 67

average 232.726 0.000 49.516 11.742 130.177 4.242 37.048

Table 3.6: Lattice-free body types (MIPLIB 3)
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instance cuts T 1 T 2 T 3 Q1 Q2 split
a1c1s1 529 0 20 60 92 3 354

aflow30a 92 0 17 4 55 4 12
aflow40b 112 0 27 8 69 1 7

atlanta-ip 446 0 47 5 252 46 96
glass4 885 0 4 1 1 0 879

manna81 0 0 0 0 0 0 0
momentum1 2471 0 15 1 1 0 2454
msc98-ip 308 0 11 1 250 23 23
mzzv42z 345 0 16 2 225 27 75

net12 204 0 12 0 48 14 130
nsrand-ipx 363 0 53 17 163 2 128

opt1217 2 0 0 0 0 0 2
protfold 2819 0 97 112 2186 241 183

rd-rplusc-21 327 0 49 25 82 3 168
roll3000 630 0 61 14 386 0 169

sp97ar 49 0 15 1 10 0 23
timtab1 676 0 38 73 113 9 443
timtab2 968 0 52 92 226 18 580
tr12-30 362 0 28 248 52 1 33
average 609.895 0.000 29.579 34.947 221.632 20.632 303.105

Table 3.7: Lattice-free body types (MIPLIB 2003, instances not included in MIPLIB 3)

restricting to two-row cuts from split sets, which are split cuts of the same rank. In that context, the

main direction for further research is to evaluate computationally the impact of various strengthenings

of the two-row relaxation, obtained by reintroducing some of the original constraints that were dropped

in it.
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instance one-row only + two-row splits + two-row all
two-row two-row

cuts %gc cuts %gc cuts %gc
10teams 699 0.00 0 0.00 0 0.00

air03 36 100.00 0 100.00 0 100.00
air04 1299 9.49 0 9.49 0 9.49
air05 1051 6.32 0 6.32 0 6.32

arki001 163 27.28 65 27.97 238 32.23
bell3a 71 69.56 48 67.39 430 68.25
bell5 115 26.23 3 22.38 25 23.08

blend2 46 21.61 6 22.61 203 26.73
cap6000 67 54.19 0 54.19 0 54.19
danoint 100 0.43 28 0.57 121 0.61
dcmulti 278 58.32 24 66.62 370 65.64

egout 79 69.81 70 80.19 244 93.37
fast0507 1662 3.10 0 3.10 0 3.10

fiber 253 17.04 86 23.15 401 18.81
fixnet6 93 18.66 361 53.30 535 53.54
flugpl 43 14.22 1 14.19 133 20.37

gen 211 61.19 54 63.95 366 63.66
gesa2 290 47.25 50 57.52 687 70.54

gesa2 o 398 47.13 69 59.11 960 67.23
gesa3 324 49.72 92 73.18 668 74.46

gesa3 o 421 67.36 126 68.59 1049 74.62
gt2 79 97.54 5 97.54 20 99.00

harp2 130 11.85 10 12.43 264 18.53
khb05250 53 95.57 13 94.58 43 90.67
l152lav 326 15.20 0 15.20 0 15.20

lseu 80 38.00 3 35.33 96 36.89
markshare1 29 0.00 0 0.00 0 0.00
markshare2 34 0.00 0 0.00 0 0.00

mas74 74 4.38 0 4.38 0 4.38
mas76 77 3.06 0 3.06 0 3.06

misc03 275 4.56 43 17.38 100 17.36
misc06 37 63.18 9 72.54 140 86.35
misc07 392 0.72 16 0.72 24 0.72
mitre 5631 83.93 100 84.74 3141 84.45

mkc 725 39.40 133 35.29 676 26.31
mod008 33 11.22 0 11.22 0 11.22
mod010 258 57.73 2 58.84 2 58.84
mod011 22 6.87 12 6.99 52 12.41

modglob 50 28.72 70 44.22 122 48.41
noswot 163 0.00 15 0.00 167 0.00

nw04 76 17.95 0 17.95 0 17.95
p0033 34 12.77 7 56.76 76 57.01
p0201 325 25.93 92 44.47 116 45.17
p0282 182 16.03 15 11.40 100 13.54
p0548 300 50.83 61 61.98 261 66.53
p2756 264 0.89 136 47.64 201 42.12

pk1 68 0.00 0 0.00 0 0.00
pp08a 204 77.53 70 89.29 217 90.16

pp08acuts 99 47.14 32 59.93 238 60.23
qiu 116 3.05 41 8.35 88 4.64

qnet1 298 22.99 11 31.73 45 28.01
qnet1 o 152 47.84 20 47.05 121 51.54

rentacar 9 0.00 0 0.00 0 0.00
rgn 72 0.00 40 2.93 47 0.00

rout 195 7.81 0 7.81 7 9.30
set1ch 464 80.71 144 90.92 543 94.14

seymour 22038 14.75 15 13.27 12 15.01
stein27 452 0.00 19 0.00 18 0.00
stein45 1069 0.00 31 0.00 268 0.00

swath 278 0.60 120 1.48 342 2.53
vpm1 87 27.29 34 43.34 130 51.69
vpm2 143 38.79 58 52.48 322 53.56

average 695.032 29.415 39.677 34.791 232.726 36.180

Table 3.8: Two-row cuts on split sets (MIPLIB 3)
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instance one-row only + two-row splits + two-row all
two-row two-row

cuts %gc cuts %gc cuts %gc
a1c1s1 278 36.35 337 40.97 529 43.86

aflow30a 154 19.99 13 17.15 92 21.73
aflow40b 169 11.52 3 11.67 112 14.30

atlanta-ip 9050 8.75 53 8.74 446 8.75
glass4 108 0.00 879 0.00 885 0.00

manna81 1980 100.00 0 100.00 0 100.00
momentum1 10043 61.03 4716 61.15 2471 57.56
msc98-ip 21799 53.94 25 53.94 308 53.95

mzzv11 18354 20.06 430 21.65 709 20.16
net12 4180 9.25 179 10.08 204 11.54

nsrand-ipx 1071 25.51 166 28.54 363 29.59
opt1217 130 0.53 2 0.53 2 0.53

protfold 5651 18.24 310 16.03 2006 13.65
roll3000 3158 67.18 159 57.23 630 60.07

sp97ar 2585 10.79 45 12.93 49 11.61
timtab1 555 27.20 363 47.26 676 47.84
timtab2 669 24.96 638 35.61 968 34.21
tr12-30 442 68.53 61 71.80 362 92.22
average 4465.333 31.324 465.500 33.071 600.667 34.532

Table 3.9: Two-row cuts on split sets (MIPLIB 2003, instances not included in MIPLIB 3)





Chapter 4

Some relaxations and their best-case gap

closure

In Chapter 3, we presented a method for separating facet-defining inequalities for the two-row model PI ,

and evaluated the impact of adding such two-row cuts to the formulation of mixed-integer programming

problems. The results suggest that their practical usefulness is limited, at least in our implementation.

However, since the separator we used is exact (in that it is able to find a violated inequality whenever

one exists), this tends to indicate that it is the model PI itself that is weak. As a consequence, it is

natural to look for different, stronger relaxations of the original MIP. In this chapter, we present four

stronger (i.e. less relaxed) variants of PI that have been proposed in the literature, and for which some

steps have been made towards practical separation. We then perform a simple numerical experiment that

aims at getting a first estimation of their potential, setting aside, for the time being, the issue of efficient

cut generation. This approach can be seen as a preliminary exploration of various research directions,

attempting to identify those which may yield interesting computational results.

Parts of the works in this chapter have been presented in [58].

4.1 Method

One traditional approach to cutting plane generation is to study specific relaxations of general MIPs

featuring particular characteristics, to then devise ways to find valid inequalities for these relaxations.

This is the approach that we adopted so far, and PI is one such relaxation.

The best way to evaluate the computational usefulness of a relaxation is to add facet-defining inequalities

for that relaxation to the initial problem formulation. We can then measure the reduction in computing

time that these cuts bring to the resolution of the problem, when compensated by the time needed to

compute them. However, computing the cuts is sometimes difficult, especially for multi-row models with

more than two rows, for which we do not know yet a fast separation algorithm.

The alternative that we adopt here is to evaluate the relaxations relative to the initial objective function.
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Given the problem

zMIP = min{cTx : x ∈ P} (4.1)

whose feasible region is the mixed-integer set P , let

zLP = min{cTx : x ∈ PLP } (4.2)

be a linear relaxation, with P = PLP ∩ {x ∈ Rn : xj ∈ Z, for j ∈ J}. The integrality gap of (4.1)

is defined as zMIP − zLP . Now let Prelax be an arbitrary relaxation of P , i.e. P ⊆ Prelax. Adding all

the facet-defining inequalities of conv(Prelax) to the formulation (4.1) yields a new optimization problem

whose linear relaxation is

zLP2 = min{cTx : x ∈ PLP ∩ conv(Prelax)}. (4.3)

Because P ⊆ PLP ∩ conv(Prelax) ⊆ PLP , we know that zLP ≤ zLP2 ≤ zMIP . We say that the percentage

of gap closed by the facet-defining inequalities of conv(Prelax) is given by

%gc = 100
zLP2 − zLP
zMIP − zLP

.

The gap closure can be seen as a measure of the “tightness” of the relaxation PLP ∩ conv(Prelax) as

projected on the objective function direction c. A value %gc = 100 indicates that the relaxation is “as

good as” the original problem if one is interested only in the optimal objective function value zMIP (and

not in the optimal solution).

Gap closure as a measure has very strong limitations. A 100% gap closure does not mean that the

optimal solution of (4.3) satisfies the integrality constraints, only that it has the same objective function

value as the optimal solution of (4.1). Some integer problems may not even have an integrality gap (i.e.

zLP = zMIP ), in which case %gc is not defined, but it may be hard to find an integer solution on the

optimal face of (4.2). Furthermore, for feasibility problems, the notion of objective function does not

exist.

In practice however, gap closure can be taken as a broad indication, especially if averaged over a range

of problem instances. The objective function value of the LP relaxation does have a meaning, because

stronger LP bounds in individual nodes of a branch and bound tree enable heavier pruning, and are thus

highly beneficial to the overall performance.

Optimizing over PLP ∩ conv(Prelax) is difficult as it implies having a description of the convex hull of

the mixed-integer set Prelax. However, if conv(Prelax) ⊆ PLP , then PLP ∩ conv(Prelax) = conv(Prelax)

and (4.3) becomes

zrelax = min{cTx : x ∈ Prelax} (4.4)

which we can solve, like the original problem, by standard MIP techniques. Unfortunately, anticipating

on the specifics of the relaxations we consider (see Section 4.2), we can already state that the relationship

Prelax ⊆ PLP holds for none of them, because in each we drop the bounds of some variables. But we can see

conv(Prelax) as a further relaxation of PLP ∩ conv(Prelax). In this context, zrelax = min{cTx : x ∈ Prelax}
can be seen as a lower bound on zLP2 = min{cTx : x ∈ PLP ∩ conv(Prelax)}. We know that zrelax ≤ zMIP

because Prelax ⊇ P , and Proposition 12 shows that zrelax ≥ zLP , even though Prelax 6⊆ PLP .
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Proposition 12. Let Prelax be a relaxation of P in which all the constraints dropped from the linear

relaxation PLP are nonbinding at an optimal point of min{cTx : x ∈ PLP }. Then

min{cTx : x ∈ Prelax} ≥ min{cTx : x ∈ PLP },

i.e. the optimization problem over Prelax has an optimal objective function value no smaller than over

PLP .

Proof. Let us consider the relaxation PLP ′ of PLP which consists in dropping from PLP all the constraints

that are not binding at its optimal solution (see Table 4.3). Since these constraints are not binding, the

optimal solution over PLP is still optimal if optimizing over PLP ′ . As PLP ′ does not have integrality

constraints, it is easy to see that it is a further relaxation of Prelax, i.e. PLP ′ ⊇ Prelax.

We will see in Section 4.2 that, although Proposition 12 seems to restrict to very specific types of

relaxations, it applies to all those we consider.

In this chapter, for all five relaxations, we report the gap closure corresponding to zrelax, defined as

%gc = 100 (zrelax − zLP )/(zMIP − zLP ), which is comprised between 0 and 100 and is a lower bound

on the percentage of gap closed by adding all cuts from the associated model. A limitation of the

technique is that these cuts would be m-row cuts derived from one single m-row model, where m is

the number of rows of the original problem. An interesting information would be provided if we could

obtain the gap closed by cuts from several k-row models with k < m. However, this would involve

computing z = min{cTx : x ∈ PLP ∩ conv(Prelax 1) ∩ · · · ∩ conv(Prelax T )} which is even harder than

min{cTx : x ∈ PLP ∩ conv(Prelax)}.

In [41], Fischetti and Monaci adopted a similar approach and performed computations for the corner

and the strict corner relaxations (and others). We extend these results with three more relaxations. We

present in the next section a quick survey of the relaxations that we are interested in.

4.2 Models

We study five types of relaxations of the mixed-integer feasible region P , all of them function of a basis

of the linear programming relaxation.

The first relaxation is the m-row version of the intersection cut model PI

PI = {(x, s) ∈ Zm × Rn+ : x = f +Rs}

introduced by Balas in [7], and further characterized in the two-row case (i.e. for m = 2) by Andersen,

Louveaux, Weismantel and Wolsey [4] and Cornuéjols and Margot [29]. This is the model, with m = 2,

for which we developed an exact separator in Chapter 3. As we saw there, it consists in dropping from

P integrality constraints on nonbasic variables and bounds on basic variables. Note that only one bound

on the nonbasic variables is included in the description of PI (s ≥ 0), while MIP instances typically come

in a so-called computational form with possibly both lower and upper bounds on the variables. However,
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Computational form Standard form
0 ≤ x ≤ U x̄, s̄ ≥ 0, x̄+ s̄ = U

variable x variable x̄ slack s̄
basic basic basic
nonbasic at lower bound nonbasic basic
nonbasic at upper bound basic nonbasic

Table 4.1: Computational form and standard form

we can build any desired relaxation directly in computational form by implicitly considering a problem

in standard form where a slack is added for each upper bound constraint. Proposition 13 shows how this

is handled. In practice, for PI , this amounts to also dropping the non-binding bound of each nonbasic

variable.

Proposition 13. In a problem in computational form, any variable xi that has a lower bound 0 and an

upper bound Ui corresponds, in standard form, to a nonnegative variable x̄i ≥ 0 and a nonnegative slack

s̄i ≥ 0. When xi is basic, both x̄i and s̄i are basic. When xi is nonbasic at lower bound, x̄i is nonbasic

and s̄i is basic. When xi is nonbasic at upper bound, x̄i is basic and s̄i is nonbasic. See Table 4.1.

Proof. This follows from incorporating the upper bound in the constraints of the problem, and explicitly

writing the slack s̄i ≥ 0, yielding x̄i + s̄i = Ui. When xi is basic, both x̄i and s̄i may take nonzero values,

so they must be basic. In order to set xi = x̄i, we set x̄i to be basic in the same row as xi, and s̄i to be

basic in the explicit upper bound constraint. Similarly, when xi is at lower bound, s̄i must be basic in

the upper bound constraint, and x̄i must be nonbasic in order to not affect the basis status of the other

variables. The same reasoning yields the result for xi at upper bound.

The other four relaxations consist in various strengthenings of the model PI built by reintroducing some

of the constraints dropped from P . In particular, Dey and Wolsey [38], Basu, Conforti, Cornuéjols

and Zambelli [20] and Fukasawa and Günlük [45] considered ways to exploit finite bounds on the basic

variables x. Specifically, Dey and Wolsey [38] extend the geometric intuition that is characteristic of

intersection cuts by introducing the concept of S-free set. An S-free set is a convex set that does not

contain any element of S in its interior. Using the same formula as for the intersection cuts, one can

build a cut from an S-free set, instead of a lattice-free (i.e. Zm-free) set, where S is the feasible region of

the x variables. They show that the resulting inequality is valid for the strengthened model

PS-free = {(x, s) ∈ S × Rn+ : x = f +Rs}

if S is the set of integral points in some rational polyhedron. This condition is not restrictive because,

in practice, we define S to be the intersection of Zm with the bound constraints on x. Furthermore, all

valid inequalities for PS-free can be obtained through such intersection cuts [38], and there is a one-to-one

correspondence between minimal inequalities for the infinite relaxation of PS-free

{(x, s) ∈ S × R∞+ : x = f +
∑
r∈Rm

rsr, s has a finite support}

and maximal S-free sets [20].
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On the other hand, Dey and Wolsey [37, 33] and Conforti, Cornuéjols and Zambelli [27] considered the

problem of exploiting any integrality constraint on non-basic variables. They propose a way to, given

a valid intersection cut for PI , strengthen the coefficients of the nonbasic integer variables by solving a

so-called lifting problem. Assuming, for simplicity, that P is a pure integer set, the lifting yields valid

inequalities for

{(x, s) ∈ Zm × Zn+ : x = f +Rs}. (4.5)

Dey and Wolsey [37, 33] show, in the two-row case, that these inequalities are extreme for the infinite

model

{(x, s) ∈ Z2 × Z∞+ : x = f +
∑
r∈R2

rsr, s has a finite support} (4.6)

if the initial inequality was extreme for the infinite relaxation of PI . The lifting is unique if the initial

intersection cut arises from specific types of lattice-free sets (namely Type-1 and Type-2 triangles [37, 33])

and sequence-dependent otherwise. This has been extended with analogous results in the multi-row and

S-free cases by Conforti, Cornuéjols and Zambelli [27].

Note that (4.5) is known as a corner relaxation of P . The corner relaxation was studied in details by

Gomory [49, 50] and Gomory and Johnson [51], and is obtained from P by dropping bounds on all basic

variables. One interesting variant of the corner relaxation, referred to as the strict corner relaxation, is

obtained from P by only dropping those bounds on basic variables that are not tight. In standard form,

it corresponds to dropping the nonnegativity constraint of variables that are not zero in the optimal LP

solution. The strict corner relaxation differs from the corner relaxation only when primal degeneracy

exists in the optimal basis. It is the intersection of the corner relaxations for all bases corresponding to

one optimal vertex. As most MIP formulations are highly degenerate, the strict corner provides insights

on the role played by degeneracy in the LP formulation.

Lastly, one can take advantage of the presence of upper bounds on nonbasic variables. Andersen, Louveaux

and Weismantel [2] tackled that case, taking into account an upper bound on one nonbasic variable. This

can be seen as considering at a pair of two-row models arising from adjacent simplex bases. They

describe geometrically the facet structure of that relaxation, showing that an additional class of facet-

defining valid inequalities then arises, whose coefficients can be read from pentagons in R2, with formula

that they develop. Although the problem has not been thoroughly studied for more than one upper

bound, we will consider here the fully-strengthened model

PIU = {(x, s) ∈ Zm × Rn+ : x = f +Rs, s ≤ U}.

As a consequence, we are probably further away from a practical implementation of a separator for that

particular model than for the other ones.

Table 4.2 presents a summary of the constraints that are dropped in each of the relaxations. The

constraints represented are the integrality constraints (denoted “∈ Z”), and bound constraints (denoted

“bnd.”). These constraints apply on the variables, which are themselves divided in categories depending

on whether they are basic or nonbasic, and on whether they are integral-constrained (“int.”) or not

(“cont.” for continuous). Constraints that are kept from the original formulation are denoted by “
√

”,

while those that are dropped are marked “×”. Some bound constraints are kept only if they are tight at

the vertex corresponding to the current basis, in which case they are marked “T”.
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basic nonbasic
int. cont.

∈ Z bnd. bnd. ∈ Z bnd.
PI

√
× × × T

S-free
√ √

× × T

lifting
√

× ×
√

T

strict
√

T ×
√

T

PIU
√

× × ×
√

Table 4.2: Constraints from the original problem;
√

: keep, T: keep if tight, ×: drop

basic nonbasic
int. cont.

∈ Z bnd. bnd. ∈ Z bnd.
PLP ×

√ √
×

√

PLP ′ × × × × T

Table 4.3: PLP and PLP ′ ;
√

: keep, T: keep if tight, ×: drop

4.3 Results

The gap closure corresponding to each relaxation is presented in Table 4.4 for the instances from the

MIPLIB 3 [23] and in Table 4.5 for the instances from the MIPLIB 2003 [1]. The instances for which

all the computations succeeded are grouped in Table 4.6. The problems dsbmip and enigma are not

shown because they have no integrality gap. The problems dano3mip, liu, momentum3 and t1717 are

not considered either because no optimal solution is known for them. The computations were performed

with CPLEX 12.3 on a machine with an Intel Core i7-990 CPU. The time limit was fixed at four hours

per problem. The absence of a result when the time limit is hit is denoted by a “?” in the tables.

It appears on Table 4.6 that the relaxation “S-free” making use of bounds on basic variables is the

strengthening of PI that has the most impact on gap closure. However, as PS-free exploits the bounds on

all m basic variables, it is potentially much stronger than a strengthened k-row model, where k is typically

smaller than m. Furthermore, “S-free”, as well as “PIU”, strengthen PI by adding bound constraints

that are also present in the LP relaxation. As we noted before, each relaxation should be intersected

with the LP relaxation in an exact computation, but we do not do that for practical reasons. Although

conv(PLP ∩ Prelax) is different from conv(PLP ) ∩ conv(Prelax), the contribution of bound constraints in

PS-free and PIU may be overemphasized as some of that contribution might be achieved by intersecting

with PLP . As a result, the strengthenings “lifting” and “strict” may be at a disadvantage over “S-free”

and “PIU”.

More significantly, we can observe that on average, exploiting all the bounds on nonbasic variables yields

little improvement on gap closure, despite the fact that, as mentioned earlier, this improvement is likely

overestimated. Therefore, although we developed in Section 2.5 an expression of the polar of PIU , this

would tend to indicate that cuts from valid inequalities for PIU are less promising computationally than

lifted cuts from valid inequalities for PI .

While variations can occur due to different LP solvers yielding different optimal bases, the overlapping
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instance PI S-free lifting strict PIU
10teams 0.00 0.00 ? ? 0.00

air03 100.00 100.00 100.00 100.00 100.00
air04 1.76 100.00 1.26 4.58 4.91
air05 2.29 100.00 2.29 4.51 3.10

arki001 4.54 12.84 ? ? ?
bell3a 60.13 83.79 83.79 83.79 60.13
bell5 4.10 21.87 4.40 4.40 4.10

blend2 37.98 74.70 37.98 37.98 59.46
cap6000 18.44 60.38 33.06 33.06 43.45
danoint 1.91 2.90 1.74 1.74 1.74
dcmulti ? 60.63 ? 23.98 ?

egout 100.00 100.00 100.00 100.00 100.00
fast0507 ? ? 46.08 46.08 ?

fiber ? 11.24 72.97 ? 6.55
fixnet6 78.87 79.40 78.87 78.87 78.87
flugpl 97.38 100.00 97.38 97.38 97.38

gen 38.00 48.37 ? ? 38.00
gesa2 o 32.41 33.83 32.55 32.46 32.35
gesa2 31.76 33.09 32.38 32.16 31.76

gesa3 o 49.20 52.95 49.20 51.93 49.42
gesa3 45.71 46.34 49.20 49.83 45.71

gt2 46.79 100.00 46.79 46.79 57.12
harp2 10.97 31.35 ? ? 20.82

khb05250 58.60 58.60 62.07 62.07 58.60
l152lav 2.50 70.29 2.50 14.69 4.02

lseu ? 25.79 ? ? 8.16
markshare1 0.00 0.00 ? ? 0.00
markshare2 0.00 0.00 ? ? 0.00

mas74 9.19 9.19 ? ? 9.19
mas76 7.73 9.70 ? ? 7.85

misc03 ? 100.00 7.24 17.59 7.24
misc06 13.74 0.00 6.04 6.04 6.04
misc07 0.00 54.88 ? 0.72 0.00
mitre 79.25 80.70 ? ? ?

mkc ? 13.27 ? ? 0.00
mod008 2.85 3.42 50.22 56.44 3.76
mod010 18.34 100.00 18.34 100.00 31.95
mod011 3.49 5.03 3.49 3.49 3.49

modglob 28.21 28.66 31.29 31.29 28.21
noswot 0.00 0.00 0.00 0.00 0.00

nw04 3.87 4.90 39.78 51.75 4.11
p0033 0.45 5.27 ? ? 0.50
p0201 ? 60.81 ? ? ?
p0282 6.70 79.11 8.90 9.28 7.71
p0548 0.01 18.82 0.02 0.02 0.01
p2756 0.15 2.50 0.29 0.29 0.15

pk1 0.00 0.00 0.00 0.00 0.00
pp08acuts ? 45.92 ? ? 32.75

pp08a ? 66.10 ? ? ?
qiu 0.00 0.00 0.00 0.00 0.00

qnet1 o 28.69 77.10 28.71 64.80 43.42
qnet1 13.72 79.45 13.72 64.31 15.06

rentacar 0.00 0.00 0.00 0.00 0.00
rgn 0.00 0.00 0.00 0.00 0.00

rout ? 5.19 ? ? ?
set1ch ? 99.98 ? ? ?

seymour ? ? 6.02 ? ?
stein27 0.00 100.00 0.00 0.00 0.00
stein45 0.00 100.00 0.00 0.00 0.00

swath ? 3.70 31.95 34.42 3.41
vpm1 ? 56.36 ? ? 78.18
vpm2 ? 54.67 ? ? ?

Table 4.4: Results on MIPLIB 3
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instance PI S-free lifting strict PIU
a1c1s1 24.42 24.74 24.42 24.42 24.42

aflow30a 14.20 26.22 14.20 14.20 17.64
aflow40b 15.61 20.53 15.61 15.61 16.84

atlanta-ip ? ? ? ? ?
ds ? 8.76 ? ? ?

glass4 0.00 0.00 0.00 0.00 0.00
manna81 ? 100.00 100.00 100.00 100.00

momentum1 ? 61.59 57.09 ? 57.08
momentum2 ? 68.30 ? ? ?
msc98-ip 31.58 50.16 ? 32.54 31.58

mzzv11 3.85 100.00 3.85 10.37 4.66
mzzv42z ? 100.00 ? 10.43 ?

net12 ? 52.73 ? ? ?
nsrand-ipx 0.00 ? ? ? 0.12

opt1217 ? 0.53 ? ? 0.53
protfold 8.74 ? 8.74 8.74 ?

rd-rplusc-21 0.00 0.00 0.00 0.00 0.00
roll3000 ? 29.16 ? ? 3.90

sp97ar ? ? ? ? ?
stp3d ? ? ? ? ?

timtab1 ? 70.10 ? ? 82.06
timtab2 ? ? ? ? ?
tr12-30 ? ? ? ? ?

Table 4.5: Results on MIPLIB 2003

instance PI S-free lifting strict PIU
air03 100.00 100.00 100.00 100.00 100.00
air04 1.76 100.00 1.26 4.58 4.91
air05 2.29 100.00 2.29 4.51 3.10

bell3a 60.13 83.79 83.79 83.79 60.13
bell5 4.10 21.87 4.40 4.40 4.10

blend2 37.98 74.70 37.98 37.98 59.46
cap6000 18.44 60.38 33.06 33.06 43.45
danoint 1.91 2.90 1.74 1.74 1.74

egout 100.00 100.00 100.00 100.00 100.00
fixnet6 78.87 79.40 78.87 78.87 78.87
flugpl 97.38 100.00 97.38 97.38 97.38
gesa2 o 32.41 33.83 32.55 32.46 32.35
gesa2 31.76 33.09 32.38 32.16 31.76

gesa3 o 49.20 52.95 49.20 51.93 49.42
gesa3 45.71 46.34 49.20 49.83 45.71

gt2 46.79 100.00 46.79 46.79 57.12
khb05250 58.60 58.60 62.07 62.07 58.60
l152lav 2.50 70.29 2.50 14.69 4.02
misc06 13.74 0.00 6.04 6.04 6.04
mod008 2.85 3.42 50.22 56.44 3.76
mod010 18.34 100.00 18.34 100.00 31.95
mod011 3.49 5.03 3.49 3.49 3.49

modglob 28.21 28.66 31.29 31.29 28.21
noswot 0.00 0.00 0.00 0.00 0.00

nw04 3.87 4.90 39.78 51.75 4.11
p0282 6.70 79.11 8.90 9.28 7.71
p0548 0.01 18.82 0.02 0.02 0.01
p2756 0.15 2.50 0.29 0.29 0.15

pk1 0.00 0.00 0.00 0.00 0.00
qiu 0.00 0.00 0.00 0.00 0.00

qnet1 o 28.69 77.10 28.71 64.80 43.42
qnet1 13.72 79.45 13.72 64.31 15.06

rentacar 0.00 0.00 0.00 0.00 0.00
rgn 0.00 0.00 0.00 0.00 0.00

stein27 0.00 100.00 0.00 0.00 0.00
stein45 0.00 100.00 0.00 0.00 0.00
a1c1s1 24.42 24.74 24.42 24.42 24.42

aflow30a 14.20 26.22 14.20 14.20 17.64
aflow40b 15.61 20.53 15.61 15.61 16.84

glass4 0.00 0.00 0.00 0.00 0.00
mzzv11 3.85 100.00 3.85 10.37 4.66

rd-rplusc-21 0.00 0.00 0.00 0.00 0.00
Average 22.56 47.35 25.58 30.68 24.75

Table 4.6: Results on MIPLIB 3 and MIPLIB 2003 – instances with no missing data
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results (i.e. “lifting” and “strict”) are mostly consistent with what Fischetti and Monaci reported in [41].

Note that, in [41], the relaxation “lifting” is referred to as “Group” and “strict” is labeled “Corner”.





Chapter 5

Separation over arbitrary mixed-integer sets

In this chapter, we aim at evaluating precisely the strength of the multi-row relaxations that are used to

generate cutting planes. It is the same broad objective as in Chapter 4, except that instead of approximate

indications about families of relaxations, we now want an accurate assessment of the usefulness of the

derived cutting planes. Indeed, the strong limitations to the generality of the approach adopted in

Chapter 4 were a trade-off for speed and simplicity, because we wanted to avoid the costly process of

computing the cuts.

Here instead, we develop techniques to compute the cuts derived from any given relaxation. In other

words, we consider the question of separating valid inequalities from arbitrary mixed-integer sets.

The study is computational in that we take our models from libraries of mixed-integer problem instances

that are widely used for benchmarking purposes, then numerically generate cuts for these models. It is

also theoretical in that we do not compute cuts to solve problems faster overall, but rather to evaluate

whether they could help solve problems faster if we had an efficient separator for the associated relaxation.

In this perspective, we build a generic separator to identify those relaxations for which trying to develop

a specific separator would be worthwhile.

The content of this chapter is joint work with Domenico Salvagnin.

5.1 Previous works

In this section, we present some previous works that are related to the subject of this chapter. They

tackle the computational side of the study of multi-row cuts.

Espinoza [39] performed the first extensive computational tests with multi-row intersection cuts. He uses

three types of fixed lattice-free sets in Rm. The first is a maximal lattice-free simplex with integer vertices,

the m-dimensional extension of Type-1 triangles (see Section 1.8). The second is a cross polytope, scaled

and translated to contain the 0-1 hypercube, so as to also be a maximal lattice-free set. The third is the

m-dimensional extension of a specific Type-2 triangle. He exploits the integrality of the nonbasic variable

through a heuristic method similar to Dey and Wolsey’s lifting [33], although without the guarantee
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of generating facet-defining inequalities for the corresponding strengthened model. He tested the three

types of lattice-free sets separately for m ∈ {1, . . . , 10}, on MIP instances from MIPLIB 3 [23] and

MIPLIB 2003 [1]. The results of these experiments are promising in that they show that the addition of

multi-row cuts can speed-up the overall branch-and-cut by up to 5% in geometric mean over the testset,

for specific types of cuts and values of m. However, they also show mixed results in general (i.e. without

a priori knowledge of which types of cuts will be successful), with in most cases a slight increase in

computing time over the solver’s defaults, in geometric mean over the testset.

Dey, Lodi, Tramontani and Wolsey [34] focused on two-row intersection cuts from Type-2 triangles. They

devise a heuristic method for building a Type-2 triangle that is parametric in the model data. The aim

is to exploit the problem structure, namely the values of f and R in PI = {(x, s) ∈ Z2 × Rn+ : x =

f + Rs}, to generate strong cuts that are, in some way, “different” from GMI cuts. The cuts are then

strengthened with an approximation of the lifting method of Dey and Wolsey [33], to take advantage

of the integrality of nonbasic variables. The method is tested on modified versions of the randomly

generated multidimensional knapsack instances of Atamtürk [6]. From these experiments, they conclude

that some two-row cuts do provide an advantage over GMI cuts, although few of the many two-row

cuts generated are eventually helpful. This result emphasizes the importance of the selection of the

two-row cuts. Furthermore, their data show that in the presence of many nonbasic integer variables, the

performance of both two-row and GMI cuts deteriorates, suggesting a need for different relaxations in

that case. To the contrary, the presence in the original problem of the bounds that are dropped in PI did

not seem to significantly impair the effectiveness of the two-row cuts (compared to when no such bounds

are present).

Basu, Bonami, Cornuéjols and Margot [18] study the case of two-row models PI for which one of the

components of f is integral. This situation typically arises when the optimal basis of the LP relaxation is

degenerate, which is frequent in MIP formulations. They present a heuristic algorithm for generating max-

imal lattice-free Type-1 and Type-2 triangles for such model. They show how to compute an intersection

cut from these triangles, and develop a closed-form formula implementing Dey and Wolsey’s lifting [33].

Note that the latter formula applies to all Type-1 and Type-2 triangles, even when both components of f

are fractional. An alternative closed-form formula is also presented, that exploits nonnegativity of one of

the basic variables. Experiments are performed on instances from a slight modification of MIPLIB 3 [61],

measuring the percentage of gap closed by the two-row cuts. They conclude that the family of cuts that

they test is effective, but not competitive with GMI cuts.

In [59], we present an exact separator for the two-row intersection cut model PI . Chapter 3 covers the

results of our computational experiments. We conclude that two-row intersection cuts close significantly

more gap than one-row intersection cuts, but we can achieve almost as much when restricting to two-row

cuts from split sets, which can be obtained by reading the GMI from a linear combination of the two

rows.

The work of Fukasawa and Goycoolea [44] does not take place in the context of multi-row cuts. However, it

is very related to the content of this chapter in that they develop an exact separator for the mixed-integer
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knapsack (i.e. one-row) model

P = {x ∈ Rn : atx ≤ b, l ≤ x ≤ u, xj ∈ Z,∀j ∈ J}.

Part of the techniques they develop to speed up separation translate directly to our problem. In particular,

they also deploy row-generation to optimize over the polar set of P (see Section 5.4), and they lift valid

inequalities from tight bounds (see Section 5.5). The objective of their computations is to compare a

specific type of cuts alone to all so-called knapsack cuts, i.e. to all valid inequalities for P together. The

specific cuts they study are obtained through the mixed-integer rounding procedure (MIR [67]), which

when applied to tableau rows simply yields GMIs. Their results show that in terms of strengthening of

the LP bound, MIR cuts alone achieve almost as much as knapsack cuts.

A constant among these results is that they underline the impressive power of the classic GMI cuts and

their variants. This raises the following question: How strong does a relaxation have to be for the cuts it

yields to significantly outperform GMIs? This is one of the questions we will tackle in this chapter.

5.2 Polarity for general polyhedra

We now set aside the question of the relaxation, and focus on the problem of separating cuts for any

given relaxation. Let PJ be a mixed-integer set

PJ = {x ∈ Rn : x ∈ PLP , xj ∈ Z for all j ∈ J} (5.1)

where PLP is a polyhedron in Rn and J is a subset of N = {1, . . . , n}. As in Chapter 2, we start by

studying the polar of conv(PJ), establishing the well-known properties related to polarity in the context

of general polyhedra. We refer the interested reader to [71] for more details. For conciseness, in the

remainder of this section, we denote P := conv(PJ).

Since we want the polar to describe the valid inequalities for P , a natural way to define it would be with

a set such as

{(α, α0) ∈ Rn+1 : αTx ≥ α0, for all x ∈ P}. (5.2)

An issue with the set in (5.2) is that it is defined in Rn+1 for a polyhedron P in Rn, preventing us from

having the simplifying symmetry that we had in Chapter 2, i.e. that a polyhedron is itself the polar of

its polar.

A simple way to overcome this issue is, noting that (5.2) always describes a polyhedral cone, to build a

“conified” variant P+ of P such that the descriptions of P and P+ are interchangeable in a trivial way.

Definition 29. Given a polyhedron P , by the Minkowski-Weyl theorem, there exist finite sets V, R, and

L such that

P = conv(V) + cone(R) + lin(L).

Let V+ := {(v,−1) ∈ Rn+1 : v ∈ V}, R+ := {(r, 0) ∈ Rn+1 : r ∈ R}, and L+ := {(l, 0) ∈ Rn+1 : l ∈ L}.
We define P+ as

P+ := cone{V+,R+}+ lin{L+}. (5.3)
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By construction, P+ is a polyhedral cone generated by the rays V+, R+, L+ and −L+ (Figures 5.1

and 5.2).

Proposition 14 (Link between the inner descriptions of P and P+).

(a). v is a vertex of P if and only if (v,−1) is an extreme ray of P+.

(b). r is an extreme ray of P if and only if (r, 0) is an extreme ray of P+.

(c). l is in the lineality space of P if and only if (l, 0) is in the lineality space of P+.

Proof. (a). The point v is a vertex of P iff v ∈ V and there do not exist coefficients λ, µ and ν such that

v =
∑

x∈V\{v}

λxx+
∑
r∈R

µrr +
∑
l∈L

νll, with λi, µi ≥ 0 for all i and
∑
i

λi = 1.

That is, iff (v,−1) ∈ V+ and there do not exist coefficients λ, µ and ν such that

v =
∑

x∈V\{v}

λxx +
∑
r∈R

µrr +
∑
l∈L

νll,

−1 =
∑

x∈V\{v}

λx(−1) +
∑
r∈R

µr0 +
∑
l∈L

νl0,
with λi, µi ≥ 0 for all i.

The latter condition expresses that (v,−1) is a vertex of P+. (b) and (c) are shown in the same way.

Lemma 12. (α, α0) ∈ Rn+1 describes a valid inequality αTx ≥ α0 for P if and only if αTx+ α0x0 ≥ 0

is valid for P+.

Proof. The inequality αTx ≥ α0 is valid for P iff (a) αT v ≥ α0 for all v ∈ V, (b) αT r ≥ 0 for all r ∈ R,

and (c) αT l = 0 for all l ∈ L. These three conditions are respectively equivalent to (a’) αT v + v0α0 ≥ 0

for all (v, v0) ∈ V+, (b’) αT r + r0α0 ≥ 0 for all (r, r0) ∈ R+, and (c’) αT l + l0α0 = 0 for all (l, l0) ∈ L+.

The latter conditions are met iff αTx+ α0x0 ≥ 0 is valid for P+.

Proposition 15 (Link between the outer descriptions of P and P+). (α, α0) ∈ Rn+1 describes a facet-

defining inequality αTx ≥ α0 for P if and only if αTx+ α0x0 ≥ 0 is facet-defining for P+.

Proof. A valid inequality (α, α0) is facet-defining for P iff it can not be expressed as a conic combination

of valid inequalities (βi, βi0) for P , all distinct from (α, α0), i.e. (βi, βi0) 6= (λα, λα0) for all i and λ > 0.

Given Lemma 12, the same statement holds for (α, α0) to be facet-defining for P+.

Corollary 4. P = {x ∈ Rn : (x,−1) ∈ P+}, i.e. P = projx(P+ ∩ {x0 = −1}).

Proof. Consider the set of all valid inequalities αTx+ α0x0 ≥ 0 for P+. Fixing x0 = 1 and projecting it

out, one obtains, by Lemma 12, the set of all valid inequalities for P .

We next define the polar Q of a polyhedral cone C ⊆ Rm. Note that we are mainly interested in the case

C = P+ with m = n+ 1.
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Figure 5.1: P = conv{1, 2}

Figure 5.2: P = conv

{(
− 1

4
1

)
,

(
− 1

4
2

)}
+ cone

{(
1
0

)}
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Lemma 13. If αTx ≥ −1 is a valid inequality for C, then αTx ≥ 0 is also valid for C.

Proof. Let y ∈ C be such that −1 ≤ αT y < 0. Because C is a cone, the point z := −2
αT y

y belongs to C.

But αT z = −2
αT y

αT y = −2 � −1. Therefore, since αTx ≥ −1 is valid, there does not exist y ∈ C such

that αT y < 0.

Proposition 16. Any valid inequality for a polyhedral cone C that defines a proper face of C is of the

form αTx ≥ 0

Proof. An inequality of the form αTx ≥ 1 can not be valid for C as it cuts the origin 0. By Lemma 13,

an inequality of the form αTx ≥ −1 can not define a proper face of C.

Definition 30. The polar of a polyhedral cone C ⊆ Rm is given by

Q :=
{
α ∈ Rm : αTx ≥ 0, for all x ∈ C

}
.

Any polyhedral cone C can be represented as

C = cone(S) + lin(T )

where S is a finite set of rays of C and T is a set of vectors forming a basis of its lineality space. We assume

without loss of generality that the set S is a minimal generating set, i.e. that cone(S \ {y}) + lin(T ) 6= C

for any y ∈ S. Given such a description of C, an alternative definition of Q arises:

Proposition 17. The set {
α ∈ Rm :

αT s ≥ 0 for all s ∈ S
αT t = 0 for all t ∈ T

}
. (5.4)

is the polar of C.

Proof. Let Q be the polar of C and Q′ be the set defined by (5.4). (a). Q ⊆ Q′: All the constraints

αT s ≥ 0 of Q′ are constraints of Q. For every t ∈ T , t and −t belong to C, so all the constraints αT t = 0

of Q′ are implied by constraints of Q. (b). Q′ ⊆ Q: Since S and T generate C, any point x ∈ C can

be expressed as x =
∑
s∈S µss +

∑
t∈T νtt with µ ≥ 0. Taking the same coefficients and combining the

constraints of Q′, we obtain
∑
s∈S µsα

T s+
∑
t∈T νtα

T t ≥ 0, hence αTx ≥ 0. Therefore, every constraint

of Q is implied by a combination of the constraints of Q′.

Note that it follows immediately from the expression (5.4) that Q is a polyhedral cone.

Proposition 18. A valid inequality xTα ≥ 0 for Q is facet-defining if and only if there exists s ∈ S such

that x ∈ cone(s) + lin(T ).
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Proof. (⇒, “only if”): We prove the contrapositive, i.e. that if there does not exist s ∈ S such that

x ∈ cone(s) + lin(T ), then xTα ≥ 0 is not facet-defining for Q. Let y ∈ cone(S) and l ∈ lin(T ) be such

that x = y + l. Since lTα = 0 for all α ∈ Q, the inequalities xTα ≥ 0 and yTα ≥ 0 define the same

face of P . If y /∈ cone(s) for any s ∈ S, then y can be expressed as a conic combination of rays in S.

In other words, y =
∑
si∈S λisi with λi ≥ 0 for all i, and y 6= νsi for all si ∈ S and ν ∈ R+. The

inequality yTα ≥ 0 is thus a combination of valid inequalities for Q that are distinct from it, so it is not

facet-defining. (⇐, “if”): We use the description (5.4) of Q and show that all the inequality constraints

are necessary and thus facet-defining. Let z ∈ S and define Cz as Cz := cone(S \ {z}) + lin(T ). Because

we assume that S is a minimal generating set, Cz ( C. Cz is a polyhedral cone so we can define its polar

Qz and by Proposition 17,

Qz

{
α ∈ Rm :

αT s ≥ 0 for all s ∈ S \ {z}
αT t = 0 for all t ∈ T

}
.

By the separating hyperplane theorem and Lemma 13, there must exist a valid inequality βTx ≥ 0 for

Cz that separates z, i.e. such that βT z < 0. As βTx ≥ 0 is not valid for C, it follows that β ∈ Qz \Q,

showing that Qz 6= Q. Therefore the inequality αT z ≥ 0 is necessary to the description of Q in (5.4).

Proposition 19. If Q is the polar of a polyhedral cone C, then C is the polar of Q.

Proof. Recall that Q = {α ∈ Rm : αTx ≥ 0, for all x ∈ C}. As Q is a polyhedral cone, we can define its

polar using Definition 30. Let G = {y ∈ Rm : yTα ≥ 0, for all α ∈ Q} be the polar of Q. If y ∈ G then

αT y ≥ 0 for all α ∈ Q, so y ∈ C. If x ∈ C then αTx ≥ 0 for all α ∈ Q, so x ∈ G. Thus G = C.

Corollary 5. Let Q = cone(B) + lin(Γ), where cone(B \ {b}) + lin(Γ) 6= Q for any b ∈ B. A valid

inequality αTx ≥ 0 for C is facet-defining if and only if α ∈ cone(β) + lin(Γ) for some β ∈ B.

Proposition 20 and Corollary 6 highlight the duality relationship between the dimension of C (resp. Q)

and the dimension of the lineality space of Q (resp. the lineality space of C).

Proposition 20. Let C be a polyhedral cone and Q its polar, the dimension of the lineality space of C

is m− dim(Q).

Proof. Let k be the dimension of the lineality space of C. There exist k and at most k linearly independent

vectors v such that v ∈ C and −v ∈ C. For each such vector v, for all α ∈ Q and x ∈ C, αTx+ αT v ≥ 0

and αTx − αT v ≥ 0. Hence we have k and at most k linearly independent equalities αT v = 0 that are

valid for Q, so dim(Q) = m− k.

Corollary 6. Let C be a polyhedral cone and Q its polar, the dimension of the lineality space of Q is

m− dim(C).

A direct consequence of Proposition 20 and Corollary 6 is that Q (resp. C) is pointed if and only if C

(resp. Q) is full-dimensional.
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Coming back to the case of the general polyhedron P , Proposition 14 shows how to construct a description

of the polyhedral cone P+ from P and Proposition 17 expresses the polar Q of P+ from that description.

Q =

 (α, α0) ∈ Rn+1 :

αTx ≥ α0 for all x ∈ V
αT r ≥ 0 for all r ∈ R
αT l = 0 for all l ∈ L

 , (5.5)

where the finite sets V, R, and L generate P = conv(V) + cone(R) + lin(L). Note that if P is pointed,

one can construct minimum sets V, R, and L as follows: V is the set of the vertices of P , R is the set of

the extreme rays of P , and L is empty.

Using Corollary 5 and Proposition 15, we know that if P is full-dimensional, the extreme rays of Q

correspond to the facet-defining inequalities for P .

5.3 Separation and normalization

Let x∗ be a point that we want to separate. We are looking for a facet-defining inequality (α, α0) of P

such that αTx∗ < α0. Note that, by the separating hyperplane theorem, such a valid inequality exists

if and only if x∗ /∈ P . One can find (α, α0) by maximizing, over the set of the valid inequalities, the

violation at x∗. This corresponds to solving

min αTx∗ −α0

s.t. (α,α0) ∈ Q.
(5.6)

Throughout this chapter, we take the convention that variables are emphasized in bold within optimiza-

tion problems, so as to distinguish them from constant data. Since Q is a polyhedron, (5.6) is a linear

programming problem. But since it is a cone, (0, 0) will be an optimal solution when x∗ ∈ P , and the

problem will always be unbounded when a violating inequality exists. As formulated here, we thus have

no means of discriminating between solutions of (5.6), e.g. looking for a most violated inequality with

finitely bounded coefficients. To do so, we first need to impose some normalization on the cut coefficients.

A common form of normalization is to fix the right-hand side α0 of the cuts. We did exactly that

in Chapter 2, fixing α0 = 1, and showing that the resulting polar set still contained all facet-defining

inequalities for radial polyhedra. Since we are now in the general case, we would have to consider a

disjunctive constraint of the type α0 = 1 ∨ α0 = 0 ∨ α0 = −1. Indeed, any valid inequality (α, α0) can

be made to fall into one of these three cases by dividing it by |α0| if α0 6= 0, but all three cases are

necessary in order to cover all the possibilities. Unfortunately, incorporating such disjunctive constraint

would make optimizing over Q much more complex, because it could no longer be modeled as a linear

programming problem.

An alternative is to bound the magnitude of the cut coefficients with a constraint of the type

n∑
i=1

|αi| ≤ 1. (5.7)
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The issue with the normalization (5.7) is that it amounts to intersecting Q with several half-spaces, as is

made obvious by the equivalent linear formulation
−γi ≤ αi ≤ γi, for all i
n∑
i=1

γi ≤ 1.

When Q is pointed, intersecting it with several half-spaces may yield vertices that do not correspond

to an extreme ray of Q. Therefore, if we optimize over that truncated cone, we could obtain optimal

solutions that do not give facet-defining inequalities.

To overcome these limitations, we adopt a normalization proposed by Balas and Perregaard in [14]

αT (x̃− x∗) = 1 (5.8)

where x̃ is an arbitrary point that belongs to the convex hull of P . That normalization is linear, and

consists in intersecting Q with a single hyperplane. As we now demonstrate, it makes the optimization

problem bounded, while not cutting away any relevant solutions.

Proposition 21. The optimization problem

s = min αTx∗ −α0

s.t. (α,α0) ∈ Q
αT (x̃− x∗) = 1

(5.9)

is always bounded. In particular, if (ᾱ, ᾱ0) is an optimal solution and s̄ its objective function value, then

s̄ ≥ −1, which means that the violation of (ᾱ, ᾱ0) in x∗ is at most one.

Proof. As x̃ ∈ P , αT x̃ ≥ α0 is a valid constraint for Q. The normalization constraint (5.8) gives

αT x̃ = 1− αTx∗, which lets us replace αT x̃ in the previous inequality, and obtain αTx∗ − α0 ≥ −1.

Remark that s̄ = −1 when the optimal solution corresponds to an inequality that is tight at x̃, because

αTx∗ = α0 − 1 if and only if α̃Tx∗ = α0.

We now show that the addition of the normalization constraint does not remove any interesting valid

inequality from the feasible region of the optimization problem (5.9).

Proposition 22. Given any valid inequality (α, α0) ∈ Q separating x∗ /∈ P , there exists λ > 0 such that

(λα, λα0) ∈ Q separates x∗ and satisfies (λα)T (x̃− x∗) = 1, for any x̃ ∈ P .

Proof. By hypothesis, αT x̃ ≥ α0 and αTx∗ < α0. Thus αT x̃ > αTx∗, and αT (x̃ − x∗) > 0. The claim

follows, by letting λ = 1/(αT (x̃− x∗)).

Corollary 7. The optimization problem (5.9) may be infeasible only if x∗ ∈ P .
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One motivation for our choice of normalization is that, when P is full-dimensional (i.e. when Q is

pointed), we can obtain facet-defining inequalities for P (i.e. extreme rays of Q) by using the simplex

method. We now show that this result holds even if P is not full-dimensional.

Lemma 14. Let C be a polyhedral cone in Rm, ek /∈ aff(C), and C{k} := C + lin(ek). If the inequality

αTx ≥ 0 is facet-defining for C{k}, then it is facet-defining for C.

Proof. First note that αk = 0. Indeed, since αTx ≥ 0 defines a proper face of C{k}, there exist w ∈ C{k}
such that αTw = 0. Therefore, αT (w + µek) ≥ 0, so αTµek ≥ 0, for all µ ∈ R.

Now let d = dim(C{k}). Because ek /∈ aff(C), d = dim(C) + 1. Since C ⊆ C{k}, α
Tx ≥ 0 is valid

for C. Since αTx ≥ 0 is facet-defining for C{k}, there exist d affinely independent points y0, . . . yd−1

in C{k} ∩ {x ∈ Rm : αTx = 0}. We assume without loss of generality that y0 = 0. The d − 1 points

y1, . . . yd−1 are linearly independent, so the matrix

Y :=
[
y1| · · · |yd−1

]
is full column rank (i.e. rank(Y ) = d − 1). For each point yi, one can construct zi = yi + µiek with

µi ∈ R such that zi ∈ C. The matrix

Z :=
[
z1| · · · |zd−1

]
differs from Y only in the kth row, so its rank is at least d − 2. As αk = 0, αT zi = αT yi = 0 for all

i. Hence we know d − 1 affinely independent zi points in C ∩ {x ∈ Rm : αTx = 0}, which is thus of

dimension at least d− 2 = dim(C)− 1.

We finally show that it is of dimension exactly dim(C) − 1. Indeed, otherwise αTx = 0 for all x ∈ C,

implying that αTx = 0 for all x ∈ C{k}, which contradicts the hypothesis that αTx ≥ 0 is facet-defining

for C{k}.

Lemma 15. Let CK := C + lin({ek : k ∈ K}) be a full-dimensional polyhedral cone in Rm such that

dim(C + lin({ek : k ∈ K, k 6= k̄})) < n for any k̄ ∈ K. If αTx ≥ 0 is facet-defining for CK , then it is

facet-defining for C.

Proof. Because dim(CK\{k̄}) < dim(CK), we know that ek̄ /∈ aff(CK\{k̄}), for all k̄ ∈ K. Furthermore,

ek̄ /∈ aff(CK\K̄), for all k̄ ∈ K̄ ⊆ K. Let κ := |K|, K = {k1, . . . , kκ}, and Kp := {k1, . . . , kp} where

0 ≤ p ≤ κ. The proof works by induction on p. By hypothesis, αTx ≥ 0 is facet-defining for CKκ . By

Lemma 14, if it is facet-defining for CKp , then it is also facet-defining for CKp−1 . Finally we obtain that

αTx ≥ 0 is facet-defining for CK0 = C.

Lemma 16. Let Q be a polyhedral cone in Rm and H the hyperplane {α ∈ Rm : πTα = 1}. If Q ∩H is

pointed and α∗ is a vertex of Q ∩H, then

(a). dim(lin.space(Q)) ∈ {0, 1},

(b). if dim(lin.space(Q)) = 1, then α∗ is on the lineality direction of Q,

(c). if dim(lin.space(Q)) = 0, then α∗ is an extreme ray of Q.
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Proof. (a). We contradict dim(lin.space(Q)) ≥ 2. Let l1 and l2 be two distinct vectors of a basis of the

linear space of Q. Both πT l1 6= 0 and πT l2 6= 0, otherwise Q ∩H would not be pointed. Let µ1, µ2 ∈ R
be such that πTµ1l1 = 1 and πTµ2l2 = 1. Because l1 and l2 are distinct vectors of a basis, µ1l1 6= µ2l2.

We can construct l′ = µ1l1 − µ2l2 in the lineality space of Q with πT l′ = 0, which contradicts the fact

that Q∩H is pointed. (b). Let l be the lineality direction of Q. Again, πT l 6= 0, otherwise Q∩H would

not be pointed. Let µ ∈ R be such that πTµl = 1. As α∗ is a ray of Q, we can construct α1 := 3
2α
∗− 1

2µl

and α2 := 1
2α
∗+ 1

2µl. One can easily verify that α1, α2 ∈ Q∩H, and that α∗ = 1
2α

1 + 1
2α

2, contradicting

the fact that α∗ is a vertex of Q ∩H. (c). Standard.

Theorem 5. Let P be a polyhedron in Rn. If x∗ ∈ aff(P ) \ conv(P ) and (α, α0) describes a valid

inequality separating x∗ obtained by optimizing over the linear problem (5.9) with the simplex method,

then αTx ≥ α0 is facet-defining for P .

Proof. To simplify the proof, we consider P+ again, and rewrite (5.9) as

min αT r∗

s.t. α ∈ Q
αT (r̃ − r∗) = 1

(5.10)

where r∗ = (x∗, 1) and r̃ = (x̃, 1). By Proposition 21, we know that the linear programming prob-

lem (5.10) has a finite optimal objective function value. If the feasible region is not pointed, then in the

solution α∗ returned by the simplex method, some nonbasic free variables must be fixed at an arbitrary

value (typically zero), with a zero reduced cost, and could not enter the basis at a finite value. Let us

denote by K the index set of such variables, i.e. α∗k is nonbasic and fixed to zero for all k ∈ K. We claim

that α∗ is a vertex of the pointed polyhedron

Q∗K :=
{
α ∈ Q : αT (r̃ − r∗) = 1 and αk = 0, for all k ∈ K

}
obtained by intersecting the feasible region with {αk = 0, for all k ∈ K}. Indeed, it corresponds to a

basic feasible solution for that polyhedron (in the classical sense of a basic feasible solution, i.e. where

all free variables are basic). Note that since none of the nonbasic free variables could enter the basis at

a finite value, Q∗K\{k} is not pointed, for any k ∈ K. Removing the normalization constraint, we obtain

QK := {α ∈ Q : αk = 0, for all k ∈ K}

which, by Lemma 16 has a lineality space of dimension zero or one. Lemma 16 also specifies that the

point α∗ is either an extreme ray of QK or a lineality direction of QK . The latter would imply that

α∗Tx = 0 is a valid equality for P+ that separates r∗, contradicting the hypothesis that r∗ ∈ aff(P+).

Hence, QK is pointed and α∗ is an extreme ray of QK .

Now observe that QK is the polar of

P+
K = P+ + lin({ek : k ∈ K})

which is full-dimensional since QK is pointed. As α∗ is an extreme ray of QK , α∗Tx ≥ 0 is facet-defining

for P+
K . By Lemma 15, it is also facet-defining for P+.



88 Chapter 5. Separation over arbitrary MIPs

Note that we consider that to each vertex of the feasible region of a linear program, corresponds at least

one basis. This is not true with textbook descriptions of the simplex method when there are redundant

constraints. It is true however with most practical implementations, where the standard form typically

includes one logical variable for each tableau row (that variable is fixed to zero in phase II).

Remark also that a specific implementation of the simplex method may not ensure that, as required by

the above proof, none of the nonbasic free variables could enter the basis at a finite value. However,

enforcing this condition can easily be implemented as a postprocessing, whenever finding facet-defining

inequalities is desirable.

5.4 Separation and row-generation

We have assumed so far that we have an inner description of P = conv(PJ). However, this assumption

does not hold in practice since, in the context of mixed-integer programming, we are typically provided

with a description of PJ as PJ := PLP ∩ {xJ ∈ Z}, where PLP := {x ∈ Rn+ : Ax = b} is a linear

relaxation of PJ . To overcome this issue, as in Chapter 3, we adopt a classic row-generation approach,

where we optimize over a relaxation Q(S, T ) of Q and iteratively strengthen this relaxation by adding to

it constraints of Q that are violated by its incumbent optimal solution.

We start by considering the following formulation of Q,

Q =

{
(α, α0) ∈ Rn+1 αTxi ≥ α0 ∀xi ∈ PJ

αT rj ≥ 0 ∀rj ∈ recc(conv(PJ))

}
, (5.11)

which is easily seen to be equivalent to (5.5). The partial description Q(S, T ) of Q is given by

Q(S, T ) :=

{
(α, α0) ∈ Rn+1 αTxi ≥ α0 ∀xi ∈ S

αT rj ≥ 0 ∀rj ∈ T

}
, (5.12)

where S ⊆ PJ , and T is a subset of the recession cone of conv(PJ). Both S and T are finite sets, and

Q(S, T ) is a relaxation of Q. We can now find candidate (i.e. possibly invalid) inequalities separating x∗

by solving for α, α0 the optimization problem

min αTx∗ −α0

s.t. αT (x̃− x∗) = 1

αT x̃ ≥ α0

αTxi ≥ α0 ∀xi ∈ S
αT rj ≥ 0 ∀rj ∈ T

(5.13)

which we call master problem. The elements of S and T are added iteratively as provided by the solution

of a slave problem (5.14). Indeed, given a candidate inequality (ᾱ, ᾱ0), solving

min ᾱTy

s.t. y ∈ PJ
(5.14)

for y can have three possible outcomes. If the slave has an optimal solution y∗ such that ᾱT y∗ ≥ α0,

then we know that (ᾱ, ᾱ0) is a valid inequality for PJ . If the slave has an optimal solution y∗ such that
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ᾱT y∗ < α0, then (ᾱ, ᾱ0) is not a valid inequality for PJ . But as y∗ ∈ PJ , we can add the constraint

αT y∗ ≥ α to Q(S, T ), which is currently violated by (ᾱ, ᾱ0). Finally, if the slave is unbounded, there

must exist a mixed-integer infinite direction r∗ of PJ such that ᾱT r∗ < 0. We thus add to Q(S, T ) the

constraint αT r∗ ≥ 0, which is valid for Q and cuts off the line {(ᾱ, λ) : λ ∈ R} including the point (ᾱ, ᾱ0).

For technical reasons, MIP solvers are not well-suited for finding mixed-integer infinite directions in

problems. However, such direction can be found easily by first optimizing over the linear programming

relaxation of PJ , looking for rays if it is not bounded. The simplex method permits this, and Corollary 8

shows that the method yields rays of conv(PJ).

Lemma 17. Let PLP be a linear relaxation of PJ and r be a rational direction, the following statements

are equivalent.

1. There exists λ > 0 such that λr is a mixed-integer infinite direction of PJ .

2. r is a ray of conv(PJ).

3. r is a ray of PLP .

Proof. (1 ⇒ 3) This follows from PJ ⊆ PLP . (3 ⇒ 1) Since r is rational, there exists λ > 0 such that

λrj ∈ Z for all j ∈ J . Thus for every x ∈ PJ and y = x+λr, y ∈ PLP and yj ∈ Z for all j ∈ J . Therefore

y ∈ PJ . (1⇒ 2) This follows from PJ ⊆ conv(PJ). (2⇒ 1) This follows from conv(PJ) ⊆ PLP .

Corollary 8. The sets conv(PJ) and PLP have the same recession cone and share a same set of extreme

rays.

Proof. Since we assume in this text that we consider only rational data, Lemma 17 shows that r is a ray

of conv(PJ) iff it is a ray of PLP , proving the claim.

Note on the other hand that in (5.12), the explicit inclusion of the constraint αT x̃ ≥ α0, where x̃ ∈ PJ
is the point used in the normalization, ensures that the master is always bounded. Indeed, the proof of

Proposition 21 equally applies to the problem

s̄ = min αTx∗ −α0

s.t. αT (x̃− x∗) = 1

αT x̃ ≥ α0.

(5.15)

The same row-generation method is used by Perregaard and Balas in [69], except that they limit to

linear programming slaves, in order to obtain fast separation. As the objective here is to have an exact

separator, we can not make this assumption.

An overview of the method is presented in Algorithm 4.
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Step 0 Input: a set PJ and a point x∗ to separate.
Initialize S := ∅ and T := ∅.

Step 1 Solve the master problem (5.13).
Let (ᾱ, ᾱ0) be an optimal solution (if such solution exists).
If the master problem is infeasible or if ᾱTx∗ ≥ ᾱ0:

There is no valid inequality for PJ separating x∗. Stop
Step 2 Solve the slave problem (5.14).

If the slave problem is infeasible:
Any inequality is valid for PJ . Consider 0 ≥ 1 and stop.

If the slave problem is unbouned:
Let r be an extreme ray of its LP relaxation PLP that
shows unboundedness (i.e. ᾱT r < 0).
T := T ∪ {r}. Go to Step 1.

If the slave problem has an optimal solution y∗:
If ᾱT y∗ < 0:

S := S ∪ {y∗}. Go to Step 1.
If ᾱT y∗ ≥ 0:

ᾱTx ≥ ᾱ0 is a valid inequality for PJ
separating x∗. Stop.

Algorithm 4: Row-generation algorithm for optimizing over Q

5.5 Faster separation through lifting

The algorithm described in the previous section computes a point of PJ or a ray of PLP at each iteration.

That involves solving a linear programming problem, then a mixed-integer problem whenever the former

is bounded. It is thus naturally slow in practice, but can be implemented. In order to illustrate the time

required to run the method, we leave aside a few implementation issues that will be covered later, and

present the results obtained in a benchmark with this algorithm. We test it on the problem instances from

MIPLIB 3.0 [23], with a heuristic selection of five-row models (see Section 5.8). The results are shown

in Table 5.1. Without delving into the details, we very quickly describe the data it presents. Before the

start of our computations, the instances are preprocessed and strengthened with a round of GMIs. The

columns GMIs and GMIs %gc show the number of GMIs generated and the percentage of gap closed as

a result. Our algorithm then separates several rounds of five-row cuts. The total number of such cuts is

indicated in the column cuts, and tight indicates the number of them that are tight at the end. Finally,

the column %gc indicates the percentage of gap closed by all the cuts (five-row and GMI), and a “Y” in

the column ex. indicates that the separation is exact (i.e. we can prove that no more gap could be closed

with cuts from the five-row models). The column time shows the total wall time taken by the experiment

in seconds, and cg iter (standing for cut-generation iterations) indicates the total number of iterations

Algorithm 4 performs, i.e. the total number of five-row MIPs solved in the process.

We observe in Table 5.1 that the test completes before hitting the time limit of four hours for only 13

of the 66 instances. Furthermore, for only 5 among them is the separation exact, and we even detect

numerical difficulties in one instance (marked by a ! in the ex. column). This means that, for at least one

of the cuts, the optimal solution returned by the LP solver does not satisfy all the constraints it should.

The experiment takes over an hour on average, with a geometric mean of almost 600 seconds.
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Base algorithm
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 1391.20 45452 14 39.03 32 18 49.45
bell5 1283.30 172368 17 14.53 64 17 21.40 !
egout 2.42 1401 8 31.94 44 30 100.00 Y

flugpl 12.67 705 7 10.75 14 8 100.00 Y
lseu 12834.91 241012 5 20.48 41 33 76.64

misc03 2919.36 120048 4 8.62 0 7 8.62
mod008 7385.68 7503 5 21.62 0 1 21.62
p0033 12.46 1575 4 34.42 45 40 100.00 Y
p0201 14400.02 896899 14 0.39 41 26 17.83
pp08a 48.03 35015 53 51.44 157 104 83.47 Y

set1ch 7668.69 227506 121 28.20 261 207 90.46
vpm1 198.51 67630 15 6.18 151 51 41.59 Y
vpm2 6404.89 517514 21 7.31 215 114 41.02

average 4197.088 179586.769 22.154 21.147 81.923 50.462 57.854 46%
geometric 598.813 39956.226 12.321 13.793 0.000 25.768 45.390 -

Table 5.1: Running time for Algorithm 4

Although we do not aim at having a separator that is fast enough to be useful for speeding up the

resolution of MIPs, the huge computing times involved on such small instances would make the cost of

the computation prohibitive on any reasonable set of medium-sized benchmark instances. It is therefore

necessary for us to come up with ways to make our separator faster.

A first possible way is to take advantage of the fact that the point x∗ typically has a lot of components

that are at one of their bounds in the formulation of PLP . In such a case, it is possible to first focus on

the face F̃ = P ∩ {xj = x∗j , for all j such that x∗j is at a bound} of P , and find a valid inequality for F̃

separating x∗. One can then lift that inequality in order for it to be valid for the whole set P . A similar

idea was exploited by Perregaard and Balas in [69].

Theorem 6 shows, in the case of one component at a bound, that the lifting is always feasible and yields

a valid inequality for P that also separates x∗. The conclusion applies to any number of bounds by using

Theorem 6 repeatedly, forming a feasible sequential lifting. Note that the bound constraint is presented

in general form fTx ≥ f0 to handle lower or upper bounds equivalently.

Theorem 6. Given P = conv({xi}) + cone({rj}) 6= ∅, consider an inequality fTx ≥ f0 that is valid for

P and let F = P ∩ {x : fTx = f0}. If F 6= ∅ and αTx ≥ α0 is a valid inequality for F , then there always

exists a finite coefficient µ such that αx+ µ(fTx− f0) ≥ α0 is valid for P .

Proof. Since P = conv({xi}) + cone({rj}), an inequality γTx ≥ γ0 is valid for P if and only if γTxi ≥ γ0

for all i and γT rj ≥ 0 for all j. Let us consider the vertices xi first. For each vertex xi, we must satisfy

the condition

αTxi + µ(fTxi − f0) ≥ α0.

We have two cases:

• fTxi = f0. In this case, we have that xi ∈ F and the inequality αTxi + µ(fTxi − f0) ≥ α0 is

satisfied for every value of µ (because αTx ≥ α0 is valid for F and µ vanishes).

• fTxi > f0. In this case, µ must satisfy the condition

µ ≥ α0 − αTxi

fTxi − f0
.
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Let us consider the rays rj . For each ray rj , we must satisfy the condition

αT rj + µfT rj ≥ 0.

Again, we have two cases:

• fT rj = 0. In this case, it is easy to check that rj is a ray also for F , and hence αT ri ≥ 0, because

αTx ≥ α0 is valid for F . Since αT ri ≥ 0 and µ vanishes, the condition is satisfied for every value

of µ.

• fT rj > 0. In this case, µ must satisfy the condition:

µ ≥ −α
T rj

fT rj

Since we have a finite number of conditions µ ≥ zk where zk is finite, taking the maximum value for the

right-hand side suffices to find a value of µ that yields a valid inequality for P .

Corollary 9. If F 6= ∅, αTx ≥ α0 is facet-defining for F , and µ = max{zk}, then αx+µ(fTx−f0) ≥ α0

is facet-defining for P .

Proof. If there are no lower bounds zk on µ, then F = P and the result is immediate. Otherwise, the

largest lower bounds on µ corresponds to (at least) one vertex xi of P such that fTxi > f0, or one

extreme ray rj of P such that fT rj > 0. In the case of a vertex, xi is tight on the lifted inequality, and

it is affinely independent from the points in F . In the case of an extreme ray, let x̃ ∈ F , the same holds

x̃ + rj . In both cases, dim(P ∩ {x : αx + µ(fTx − f0) = α0}) = dim(F ) + 1, so the lifted inequality is

facet-defining for P .

In case F is empty, i.e. if it is not a proper face of P , then Theorem 7 provides a similar result, showing

again how to lift to obtain a valid inequality for P .

Theorem 7. If F = ∅, there always exists a finite coefficient µ such that µ(fTx − f0) ≥ 1 is valid for

P , i.e. we can always lift the inequality 0Tx ≥ 1.

Proof. The proof is similar to the one of the previous theorem. Let us consider the vertices first. Since

F = ∅, then it cannot be that fTxi = f0, otherwise xi would be a feasible point in F . So we must have

fTxi > f0, and hence the condition:

µ ≥ 1

fTxi − f0

Let us consider the rays. We must prove that µfT rj ≥ 0. Since fT rj ≥ 0, we get the condition µ ≥ 0 (the

same per all rays). Taking again the largest right-hand side of the constraints on µ proves the claim.

In general, if fTx ≥ f0,∀x ∈ P , Theorem 6 shows that an inequality (α, α0) valid only for the nonempty

set P ∩ {fTx = f0} can always be lifted so as to be valid for P . Theorem 7 indicates that this is also

true when P ∩ {fTx = f0} is empty provided that α = 0 and α0 = 1. Note that any inequality is valid
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for the empty set, but we proved that for the special choice of the infeasible constraint 0 ≥ 1, the lifting

problem is always feasible.

In all cases, if fTx∗ = f0, then the slack of the lifted inequality at x∗,

αTx∗ + µ(fTx∗ − f0)− α0

is equal to the slack of the initial inequality at x∗,

αTx∗ − α0.

In other words, lifting a valid inequality that is violated at x∗ from a face that is tight at x∗ yields a new

valid inequality that is violated by the same amount at x∗.

As mentioned earlier, one family of inequalities defining faces of P is readily available: the constraints

of the linear programming relaxation of the mixed-integer set P . In standard form, these are simply the

bounds on the variables. Furthermore, if the point x∗ that we want to separate is a vertex of the LP

relaxation, then we know that a number of its components (namely, the nonbasic variables) are tight at

their respective bounds. And we just showed that lifting from tight constraints does not affect violation.

In practice, for a lower bound constraint xj ≥ lj , the lifted inequality takes the form αTx+µ(xj−lj) ≥ α0

and for an upper bound constraint xj ≤ uj , it becomes αTx+ µ(uj − xj) ≥ α0. Since in both cases the

bound is tight at x∗j , we can replace lj and uj by x∗j . Denoting by αj the cut coefficient for xj , we obtain

the common formula

αTx+ αjxj ≥ α0 + αjx
∗
j .

We can now apply these concepts to design a two-phase process. Let

P := {x ∈ Rn : Ax = b, l ≤ x ≤ u, xJ ∈ Z}

and N be the index set of components x∗ that are at a bound, i.e. either x∗j = lj or x∗j = uj , for all

j ∈ N . We denote by B the complement set, B := {1, . . . , n} \N .

In a first phase, we find a valid inequality (ᾱB , ᾱ0) for F := P ∩{xN = x∗N}. If no such inequality exists,

then x∗B ∈ F ⊆ P , which means that there is no valid inequality for P that separates x∗. In the special

case where F is empty, we consider (ᾱB , ᾱ0) = (0, 1), as Theorem 7 suggests.

In a second phase, we find a valid inequality (αN , αB , α0) for P . In that process, we can fix αB = ᾱB

and α0 = ᾱ0 + αTNx
∗
N . The above reasoning guarantees that a feasible solution exists for αN and that

the violation at x∗ of the initial cut obtained is conserved through the second phase. Remark also that

in the second phase, the normalization constraint (5.8) is always satisfied, hence redundant.

Our proposed approach is summarized in Algorithm 5, where the inequalities (α, α0) in Phases 1 and 2

are found using Algorithm 4.

The results from Table 5.2 show that this method yields a decrease in computation time by a factor 6 in

geometric mean over the 13 instances. More importantly, we now have exact separation for more than
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Init Let N,B be such that xN = x∗N and xj 6= x∗j ,∀j ∈ B
Phase 1 Let P1 := P ∩ {xN = x∗N}.

If P1 = ∅,
(ᾱB , ᾱ0) := (0, 1). Go to Lifting.

Find a valid inequality (ᾱB , ᾱ0) for P1.
If no such inequality exist,

No valid inequality for P separates x∗. Stop.
Phase 2 Find a valid inequality (αN , ᾱB , α0) for P .

Algorithm 5: Two-phase process

Two-phase
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 347.56 31883 14 39.03 39 22 55.76
bell5 158.76 38588 17 14.53 106 15 20.50
egout 1.50 863 8 31.94 77 41 100.00 Y

flugpl 5.21 272 7 10.75 22 11 100.00 Y
lseu 11741.74 156057 5 20.48 109 54 82.13

misc03 383.11 27610 4 8.62 0 7 8.62
mod008 242.83 61 5 21.62 0 1 21.62
p0033 4.18 672 4 34.42 45 28 100.00 Y
p0201 5151.84 199654 14 0.39 61 28 17.83 Y
pp08a 19.69 11375 53 51.44 190 119 83.47 Y

set1ch 179.56 26303 121 28.20 318 208 90.46 Y
vpm1 29.83 9286 15 6.18 171 50 41.59 Y
vpm2 193.88 45999 21 7.31 304 130 41.02

average 1419.976 42201.769 22.154 21.147 110.923 54.923 58.692 54%
geometric 105.772 8548.323 12.321 13.793 0.000 28.189 45.904 -

Table 5.2: Running time for Algorithm 5: two-phase approach

half of the instances. And we will see in the next section that the same reasoning can be carried on to

obtain further improvements. Note the we leave aside for now the columns presenting the number of cuts

and the amount of gap closed, as we focus only on the speed of cut generation. They are merely provided

for completeness, and to check the consistency of our results.

5.6 Lifting binary variables

In the previous section, we only proved that under certain condition, it is possible to lift a valid inequality.

We did not provide a way to compute the lifting coefficient (µ in Theorem 6 and Theorem 7) as we simply

rely on Algorithm 4 to find it.

It may be interesting however to examine the lifting problem itself. For simplicity, we assume for the

time being that we want to lift the cut coefficient of only one variable xk, i.e. N = {k}. Let us consider

a valid inequality ᾱB ≥ ᾱ0 for F = P ∩ {xk = x∗k}. We want to find αk such that

αkxk + ᾱBxB ≥ ᾱ0 + αkx
∗
k

is satisfied for all (xk, xB) in P . We know that it is always true if xk = x∗k. For xk 6= x∗k, we need

αk(x∗k − xk) ≤ ᾱBxB − ᾱ0
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i.e. 
αk ≤

ᾱBxB − ᾱ0

x∗k − xk
∀x ∈ P : xk < x∗k

αk ≥
ᾱBxB − ᾱ0

x∗k − xk
∀x ∈ P : xk > x∗k.

(5.16)

For a given k, only one of the two types of conditions in (5.16) can occur, since x∗k is the value of a bound

on xk. Therefore, we can find αk if we can solve the optimization problem

αk = min

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk < x∗k

}
(5.17)

if x∗k is at upper bound or

αk = max

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk > x∗k

}
(5.18)

if x∗k is at lower bound. Unfortunately, we can not tackle (5.17) or (5.18) in practice, be it only because

the constraints xk < x∗k and xk > x∗k may make the feasible region an open set. However, if k ∈ J , i.e. if

xk is an integer-constrained variable, the problems become

αk = min

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk ≤ x∗k − 1

}
(5.19)

and

αk = max

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk ≥ x∗k + 1

}
, (5.20)

respectively. While the objective functions of (5.19) and (5.20) are still nonlinear, their feasible regions

are mixed-integer sets. And if we further specify that xk is a binary variable, then the problems reduce

to

αk = min {ᾱBxB − ᾱ0 : x ∈ P and xk = 0} (5.21)

and

αk = −min {ᾱBxB − ᾱ0 : x ∈ P and xk = 1} , (5.22)

which are mixed-integer programming problems.

Therefore, for a binary variable, it is possible to compute a lifted cut coefficient by solving a single MIP

instead of resorting to the row-generation Algorithm 4 which may need to solve many MIPs of the same

size. In general for |N | ≥ 1, we can compute sequentially a valid lifted coefficient αk for all the binary

variables, by solving for each k the mixed-integer problem

αk = (1− 2x∗k) min
x∈P

{
ᾱTBxB − ᾱ0 : xN\{k} = x∗N\{k}, xk = 1− x∗k

}
(5.23)

then setting N := N \ {k} and B := B ∪ {k}. Note that such a lifting is not unique. In particular, it is

sequence-dependent, i.e. it depends on the order according to which it is applied on variables.

On our benchmark set, the sequential lifting of binary variables lets us further decrease the computational

times, at 74 seconds in geometric mean, down from 106 seconds (Table 5.3). Moreover, the separation is

now exact for all but three instances.
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Lifting binaries
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 122.04 17572 14 39.03 68 25 56.77
bell5 131.01 27178 17 14.53 129 15 20.50 Y
egout 0.79 431 8 31.94 57 23 100.00 Y

flugpl 7.48 272 7 10.75 22 11 100.00 Y
lseu 2592.50 16016 5 20.48 157 54 82.13 Y

misc03 75.24 2277 4 8.62 59 8 8.62 Y
mod008 608.23 51 5 21.62 0 1 21.62
p0033 3.77 174 4 34.42 36 21 100.00 Y
p0201 1514.24 23076 14 0.39 119 41 17.83 Y
pp08a 14.32 11112 53 51.44 167 113 83.47 Y

set1ch 315.11 31078 121 28.20 292 198 90.46 Y
vpm1 21.33 9744 15 6.18 174 43 41.59 Y
vpm2 343.53 61836 21 7.31 325 102 41.01

average 442.276 15447.462 22.154 21.147 123.462 50.385 58.769 77%
geometric 74.334 4080.668 12.321 13.793 0.000 26.675 45.967 -

Table 5.3: Running time: lifting binary variables

5.7 Computational tricks

Recall that, given a candidate inequality (ᾱ, ᾱ0), we solve the slave MIP (5.14)

min ᾱTy

s.t. y ∈ P

to check whether (ᾱ, ᾱ0) belongs to Q, i.e. whether it is a valid inequality for P . Let y∗ be the optimal

solution, if ᾱT y∗ ≥ α0, then (ᾱ, ᾱ0) is valid. If ᾱT y∗ < α0, we can add the constraint αT y∗ ≥ α to

Q(S, T ).

In the first case, we do not need the exact value of y∗. Therefore, during the branch-and-bound process,

if the global LP bound becomes larger then α0, then we already know that ᾱT y ≥ α0 for all y ∈ P ,

so (ᾱ, ᾱ0) is valid. Note that the global LP bound is the lowest of the LP bounds of the individual

branch-and-bound nodes that are open at a given time of the branch-and-bound algorithm.

In the second case, we do not strictly need y∗ to be optimal as long as it provides a constraint of Q that is

violated at (ᾱ, ᾱ0). Therefore, if a feasible solution ỹ ∈ P becomes available during the branch-and-bound

such that ᾱT ỹ < α0, then it can already be added to the formulation of Q.

Based on these observation, we take advantage of the callback facilities provided by the solver (CPLEX),

and implement a function to be called at each new node of the branch-and-bound. If this function detects

that the global LP bound raises above α0, the branch-and-bound is interrupted, and we mark (ᾱ, ᾱ0) as

a valid inequality for P . If it detects that a suitable feasible solution ỹ is available, then it decreases the

iteration limit that we put on MIP resolution. This way, the branch-and-bound search for a more-violated

constraint of Q continues, but we avoid spending too much computing time on it, as it is not strictly

necessary.

By implementing this on top of the techniques described earlier, we manage to further reduce the com-

putation time. Table 5.4 shows that the geometric mean of the time spent is now 57 seconds, instead of

74 previously.

A second computational technique we explore is closely related to the lifting described in Section 5.6.
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Callbacks
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 93.97 15068 14 39.03 69 24 56.82
bell5 93.79 27272 17 14.53 129 15 20.50 Y
egout 0.76 436 8 31.94 57 23 100.00 Y

flugpl 6.93 272 7 10.75 22 11 100.00 Y
lseu 2135.36 13492 5 20.48 134 28 77.76

misc03 57.46 2277 4 8.62 56 8 8.62 Y
mod008 653.68 511 5 21.62 1 2 21.70
p0033 3.46 174 4 34.42 36 21 100.00 Y
p0201 296.92 16674 14 0.39 115 39 17.83 Y
pp08a 13.63 11112 53 51.44 167 113 83.47 Y

set1ch 219.20 31078 121 28.20 292 198 90.46 Y
vpm1 19.72 9744 15 6.18 174 43 41.59 Y
vpm2 291.17 61776 21 7.31 324 103 41.01

average 298.927 14606.615 22.154 21.147 121.231 48.308 58.443 69%
geometric 56.905 4639.462 12.321 13.793 69.913 26.584 45.790 -

Table 5.4: Running time: MIP solver callbacks

Upon closer look at the condition (5.16), it appears that while we can not solve the derived optimization

problems (5.17) and (5.18) through mixed-integer linear programming, we can at least provide finite

bounds on the coefficient αk by solving a MIP. Specifically, (5.16) gives for any ε > 0

αk ≤ min

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk = x∗k − ε

}
(5.24)

and

αk ≥ max

{
ᾱBxB − ᾱ0

x∗k − xk
: x ∈ P and xk = x∗k + ε

}
. (5.25)

Note that solving (5.24) or (5.25) for all ε > 0 would provide a necessary and sufficient condition for the

validity of αk. Solving them for a fixed value of ε instead only provides a necessary condition

αk ≤
1

ε
min {ᾱBxB − ᾱ0 : x ∈ P ∩ {xk = x∗k − ε}} (5.26)

if x∗ is at upper bound and

αk ≥ −
1

ε
min {ᾱBxB − ᾱ0 : x ∈ P ∩ {xk = x∗k + ε}} (5.27)

if x∗ is at lower bound, that we can compute by solving a MIP. These bounds are valid constraints for the

master problem, but there is no formal argument for claiming that adding them to our representation of

Q will make separation faster. Indeed, the most part of our computing time is devoted to solving the slave

MIP, whose difficulty is not directly affected by the state of the master. However, the intuition suggests

that we may decrease the number of iterations in Algorithm 4 by refining our initial representation of Q.

In practice, we need to choose a value for ε > 0 to solve (5.26) or (5.27) as mixed-integer linear problems.

We would prefer to obtain a strong bound on αk, but we do not have any way of predicting what value

of ε will provide such good bound. We only know that very small and very large values of ε are likely to

cause numerical trouble. We thus choose to fix ε = 1 in our computations. Further motivation is provided

in the special case where xk is an integer-constrained variable. Then, the exact bound is provided by

solving (5.26) or (5.27) for all ε ∈ {1, 2, . . .}, and ε = 1 has a special status as the smallest possible value

in the set.

Table 5.5 shows that the intuition is wrong and that computing bounds on αk by solving MIPs does not

decrease the number of iterations in Algorithm 4. On most instances, it seems to be counter produc-
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Bounds on α
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 94.96 15068 14 39.03 69 24 56.82
bell5 91.88 27272 17 14.53 129 15 20.50 Y
egout 0.56 436 8 31.94 57 23 100.00 Y

flugpl 5.46 272 7 10.75 22 11 100.00 Y
lseu 2005.63 74796 5 20.48 217 103 82.13 Y

misc03 57.82 2277 4 8.62 56 8 8.62 Y
mod008 658.90 511 5 21.62 1 2 21.70
p0033 9.69 174 4 34.42 36 21 100.00 Y
p0201 2259.56 32379 14 0.39 122 35 17.83 Y
pp08a 22.92 11112 53 51.44 167 113 83.47 Y

set1ch 340.94 31078 121 28.20 292 198 90.46 Y
vpm1 33.95 9744 15 6.18 174 43 41.59 Y
vpm2 469.82 61776 21 7.31 324 103 41.01

average 465.545 20530.385 22.154 21.147 128.154 53.769 58.779 77%
geometric 80.073 5569.988 12.321 13.793 72.884 29.142 45.983 -

Table 5.5: Running time: computing bounds on α coefficients

tive, as suggested by the increased computing times. Therefore, this technique is not used in the next

computation.

A third computational technique also exploits an idea related to lifting. Our empirical experience has

shown that while phase-1 and lifting are usually fast, phase-2 consumes the largest share of our computing

time. To try to obtain a phase-2 implementation that more closely resembles the lifting, we can look for

the αk coefficients, still via row-generation, but one by one. Indeed, phase-2 solves the problem of lifting

all the αk for k ∈ N simultaneously. We can instead find the values of each αk sequentially. By doing so,

we lose a degree of freedom: In a simultaneous lifting, we can find the “best” coefficients according to a

given measure. In a sequential lifting, this is not possible, as the result mainly depends on the particular

order according to which we treat the variables. However, we are not using any measure for the quality

of the cuts in Algorithm 5. In particular, the objective function is zero in phase-2, as the violation of

the inequality we look for is already fixed at the violation found in phase-1. As was the case when we

computed bounds on α, we do not have any formal argument for claiming that the sequential lifting

would speed the computation up. The intuition is that we will apply row-generation many times, but to

solve simpler problems, and we can only verify it through experimentation.

In this new implementation, after phase-1, we try to fix as many αk coefficient as possible via sequential

lifting. We call this phase-S, and it is performed with a reduced iteration limit for Algorithm 4. For all

the remaining coefficients that are not found in phase-S, we then fall back to phase-2.

The data in Table 5.6 shows that phase-S does not improve the speed of our separator. The computing

times are larger, and the overall number of row-generation iterations is not consistently decreased. How-

ever, by combining the addition of bounds on α and phase-S (Table 5.7), we see that we obtain results

that are competitive with those of Table 5.4, beating them by a large margin except for two instances.

Table 5.8 summarizes all the techniques we have tested, and the resulting computing times.
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Phase-S
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 78.86 10988 14 39.03 82 28 56.83
bell5 66.88 13544 17 14.53 115 15 20.50 Y
egout 11.73 3450 8 31.94 64 22 100.00 Y

flugpl 9.14 359 7 10.75 26 7 100.00 Y
lseu 3787.37 52255 5 20.48 172 81 82.13 Y

misc03 226.26 2311 4 8.62 67 10 8.62 Y
mod008 1088.27 2182 5 21.62 0 1 21.62
p0033 5.86 520 4 34.42 53 38 100.00 Y
p0201 291.55 8620 14 0.39 121 46 17.83 Y
pp08a 11.44 9350 53 51.44 164 110 83.47 Y

set1ch 25.01 12157 121 28.20 291 191 90.46 Y
vpm1 14.71 5361 15 6.18 188 28 41.59 Y
vpm2 390.63 61467 21 7.31 318 104 40.40

average 462.132 14043.385 22.154 21.147 127.769 52.385 58.727 77%
geometric 72.323 5786.490 12.321 13.793 0.000 27.681 45.917 -

Table 5.6: Running time: phase-S (i.e. sequential phase-2)

Phase-S + Bounds on α
name time cg iter GMIs GMIs %gc cuts tight %gc ex.

bell3a 65.21 15098 52.85 39.03 61 29 56.72
bell5 47.30 27607 14.53 14.53 91 15 20.50 Y
egout 0.97 966 90.81 31.94 64 22 100.00 Y

flugpl 4.34 361 12.54 10.75 27 9 100.00 Y
lseu 1859.27 27700 52.48 20.48 176 35 80.62

misc03 49.00 2473 8.62 8.62 55 9 8.62 Y
mod008 632.03 2182 21.62 21.62 0 1 21.62
p0033 4.41 438 71.11 34.42 45 30 100.00 Y
p0201 1386.99 28627 38.08 0.39 150 48 17.83 Y
pp08a 8.94 10552 51.44 51.44 167 112 83.47 Y

set1ch 22.76 13143 38.11 28.20 301 201 90.46 Y
vpm1 6.81 5590 26.99 6.18 181 36 41.59 Y
vpm2 187.12 63974 37.23 7.31 327 101 41.01

average 328.858 15285.462 39.724 21.147 126.538 49.846 58.649 69%
geometric 41.790 6015.653 32.527 13.793 0.000 26.513 45.898 -

Table 5.7: Running time: phase-S and bounds on α

5.8 Experimental setup

In this chapter, we aim at obtaining a reasonable evaluation of the percentage of gap closed by cuts from

various relaxations. The general layout of our experiment is summarized in Algorithm 6. We work on

the 66 instances from MIPLIB 3 [23], which are first preprocessed using the default MIP preprocessing

parameters of the solver (CPLEX 12.4). For each instance, we start by optimizing over the LP relaxation

and computing the optimal LP tableau. From that tableau, we build the multi-row relaxations that we

will use throughout the computation, and compute a round of GMI cuts. After adding these GMIs to

the formulation, we enter in the main loop. In the main loop, we try to separate the current LP optimal

point with each multi-row model, and add the separating cuts to the formulation.

We now describe how we construct the multi-row models. From a theoretical perspective, closures are

a useful tool to evaluate the strength of a family of cutting planes. For a given family of cuts, the first

closure is the polyhedron obtained by adding all the cuts of that family that arise from models that are

constructed from the LP relaxation of a MIP. In practice, this means that each row of the underlying

models can be a linear combination of any set of rows from any tableau of the LP relaxation. The ith

closure is obtained by adding cuts from models constructed upon the i− 1th closure. A cut is said to be

rank-i with respect to its family if it is valid for the ith closure.



100 Chapter 5. Separation over arbitrary MIPs

Base algorithm Two-phase Lifting binaries
name time cg iter %gc ex. time cg iter %gc ex. time cg iter %gc ex.

bell3a 1391.20 45452 49.45 347.56 31883 55.76 122.04 17572 56.77
bell5 1283.30 172368 21.40 ! 158.76 38588 20.50 131.01 27178 20.50 Y
egout 2.42 1401 100.00 Y 1.50 863 100.00 Y 0.79 431 100.00 Y

flugpl 12.67 705 100.00 Y 5.21 272 100.00 Y 7.48 272 100.00 Y
lseu 12834.91 241012 76.64 11741.74 156057 82.13 2592.50 16016 82.13 Y

misc03 2919.36 120048 8.62 383.11 27610 8.62 75.24 2277 8.62 Y
mod008 7385.68 7503 21.62 242.83 61 21.62 608.23 51 21.62
p0033 12.46 1575 100.00 Y 4.18 672 100.00 Y 3.77 174 100.00 Y
p0201 14400.02 896899 17.83 5151.84 199654 17.83 Y 1514.24 23076 17.83 Y
pp08a 48.03 35015 83.47 Y 19.69 11375 83.47 Y 14.32 11112 83.47 Y

set1ch 7668.69 227506 90.46 179.56 26303 90.46 Y 315.11 31078 90.46 Y
vpm1 198.51 67630 41.59 Y 29.83 9286 41.59 Y 21.33 9744 41.59 Y
vpm2 6404.89 517514 41.02 193.88 45999 41.02 343.53 61836 41.01
avg. 4197.09 179586.8 57.85 46% 1419.98 42201.8 58.69 54% 442.28 15447.5 58.77 77%

geom. 598.81 39956.2 45.39 - 105.77 8548.3 45.90 - 74.33 4080.7 45.97 -

Callbacks Bounds on α Phase-S
name time cg iter %gc ex. time cg iter %gc ex. time cg iter %gc ex.

bell3a 93.97 15068 56.82 94.96 15068 56.82 65.21 15098 56.72
bell5 93.79 27272 20.50 Y 91.88 27272 20.50 Y 47.30 27607 20.50 Y
egout 0.76 436 100.00 Y 0.56 436 100.00 Y 0.97 966 100.00 Y

flugpl 6.93 272 100.00 Y 5.46 272 100.00 Y 4.34 361 100.00 Y
lseu 2135.36 13492 77.76 2005.63 74796 82.13 Y 1859.27 27700 80.62

misc03 57.46 2277 8.62 Y 57.82 2277 8.62 Y 49.00 2473 8.62 Y
mod008 653.68 511 21.70 658.90 511 21.70 632.03 2182 21.62
p0033 3.46 174 100.00 Y 9.69 174 100.00 Y 4.41 438 100.00 Y
p0201 296.92 16674 17.83 Y 2259.56 32379 17.83 Y 1386.99 28627 17.83 Y
pp08a 13.63 11112 83.47 Y 22.92 11112 83.47 Y 8.94 10552 83.47 Y

set1ch 219.20 31078 90.46 Y 340.94 31078 90.46 Y 22.76 13143 90.46 Y
vpm1 19.72 9744 41.59 Y 33.95 9744 41.59 Y 6.81 5590 41.59 Y
vpm2 291.17 61776 41.01 469.82 61776 41.01 187.12 63974 41.01
avg. 298.93 14606.6 58.44 69% 465.55 20530.4 58.78 77% 328.86 15285.5 58.65 69%

geom. 56.91 4639.5 45.79 - 80.07 5570.0 45.98 - 41.79 6015.7 45.90 -

Table 5.8: Running time: summary

1 Input: a mixed-integer problem P , its linear relaxation PLP
2
3 Optimize over PLP .
4 Generate a round of GMIs from the optimal tableau.
5 Build multi-row models from the optimal tableau.
6 Add the GMIs to PLP
7
8 do
9 Optimize over PLP . Let x∗ be the optimal solution.

10
11 for each multi-row model,
12 generate a cut, trying to separate x∗.
13 end for
14 Add the separating cuts to PLP .
15 while at least one cut was added.

Algorithm 6: Main cut-generation loop
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Because our separator is still too slow for that purpose, we can not claim to be even approaching the

computation of a first closure for the various types of cuts we test. We thus have to pick a way to select

the relaxations from which to generate cuts. Our first attempt is to fix one optimal tableau, and build

models from all combinations of rows that can be directly read from that tableau. This is a natural

choice since in practice, most cutting planes are generated from simplex tableaux, and intersection cuts

from an optimal tableau are guaranteed to separate the corresponding optimal vertex. This yields
(
m
k

)
k-row models for a MIP with m rows.

Remark that all the relaxations that we consider are strengthenings of the intersection cut model PI .

We assume that in a practical context, the corresponding cuts would be generated with variants of the

intersection cut method. For that reason, we will consider only models for which all basic variables are

integer-constrained and at least one component of f is fractional.

Throughout this chapter, we build all the models directly from data of the initial problem, hence gener-

ating only rank-1 cuts.

Various computational issues can arise when computing cuts with our separator:

(a). The computation of a slave MIP fails:

(i). The iteration limit is hit:

• 106 branch-and-bound nodes when looking for the point x̃ used in the normalization (see

Section 5.3),

• 10000 nodes when solving a regular slave MIP,

• 1000 nodes when a feasible solution that corresponds to a violated master constraint is

already known (see Section 5.7),

• 10000 nodes when lifting binary variables or finding bounds on α coefficients (see Sec-

tion 5.6).

(ii). The MIP solver detects unboundedness despite the LP relaxation being bounded.

(iii). The MIP solver claims the problem to be infeasible while we found a feasible solution at a

previous iteration.

(iv). The MIP solver encounters variables whose value is too large to be represented internally with

a 32-bit integer.

(b). The computation of the master LP fails:

(i). The solver claims the master to be unbounded, which is not possible by construction (see

Section 5.3).

(ii). The solver claims the master to be infeasible while lifting a valid inequality, which should not

happen either (see Section 5.5).

(iii). The solver returns a solution that does not satisfy all the constraints provided (violation larger

than 1
210−7).
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(c). Algorithm 4 fails:

(i). The iteration limit (2500) is hit.

(ii). The global time limit (4 hours) is hit.

(d). A generated inequality has bad numerical properties or does not separate the point x∗:

(i). its violation at x∗ is less than 10−4,

(ii). its dynamism (i.e. the quotient of the largest and the smallest nonzero cut coefficient) is larger

than 106, or

(iii). its efficacy (i.e. the violation divided by the dynamism) is less than 10−5.

(e). We run out of memory.

In most of the above cases, the computation fails for the concerned model but can continue with other

models. However, case (b.iii) indicates that we could not trust the solver to provide valid inequalities

and we consider that we should abort the computation for the whole instance if it happens. And we can

not recover from memory exhaustion (case (e)).

In practice, issues arise for a number of models in almost all of the instances. But as long as, at each

iteration of Algorithm 6, one or more models generate separating inequalities, the process can continue.

Only the last iteration of the loop matters to determine whether we have exact separation or not. If, at

the last iteration, no issues occur, then we have proven that the last point x∗ could not be separated by

any of the multi-row models, i.e. we have exact separation. Otherwise, we only provide a lower bound

on the amount of gap that can be closed with the given selection of multi-row models.

Table 5.9 present the results obtained by running Algorithm 6 with the selection of 2-row models described

above. We run our test on 62 of the 65 MIPLIB 3 instances (dsbmip and enigma have no integrality

gap and no optimal solution is known for dano3mip). We have results from 55 of the 62 instances (issue

(b.iii) occurs four times, issue (c) occurs three times).

We observe that, on average, the amount of gap closed by the two-row cuts (37.493%) is significantly

higher than the gap closed by the GMIs (22.596%). This is not surprising however, as we consider full

two-row models, i.e. we do not drop any integrality or bound constraint on the variables. The main

lesson from Table 5.9 is that the running time is not satisfactory. We hit the global time limit (4 hours)

in most instances, and we have exact separation for only 13 of them.

These excessive computing times can be blamed in large part on the sheer number of two-row models we

select when taking all suitable pairs of rows from an optimal tableau. Moreover, this problem is bound to

get worse when considering relaxations with more than two rows. In order to alleviate the computational

burden caused by this policy, we now look for a more restricted selection of models that could nevertheless

provide similar results.

As in Chapter 3, we try to construct models whose rows have similar supports. To that end, we design

the heuristic row selector summarized in Algorithm 7. It first builds, for each row of the tableau, a cluster
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All 2-row models
name GMIs GMI %gc time cuts (t) %gc ex.

10teams 100 57.14 14417.29 4 57.14
air03 3 100 0.699894 32 100 Y
air04 100 8.60 14400.84 15 8.60
air05 100 4.63 14400.98 8 4.63

arki001 7 0.00 14400.16 7 0.00
bell3a 14 39.03 513.98 120 59.02 Y
bell5 17 14.53 1504.47 34 91.23 Y

blend2 5 16.04 3100.16 39 28.20 Y
cap6000 2 39.91 14400.96 2 39.91
danoint 31 0.26 14400.06 65 1.74

egout 8 31.94 5.29 26 100.00 Y
fiber 22 69.30 14400.03 704 86.48

fixnet6 11 22.26 14400.82 27 33.41
flugpl 7 10.75 17.21 8 44.52 Y

gen 6 1.27 14400.41 9 37.81
gesa2 o 70 30.68 14400.02 191 45.79
gesa3 37 20.48 14400.01 246 51.34

gesa3 o 64 50.54 14402.15 228 59.64
gt2 11 47.22 14400.49 104 58.33

harp2 22 22.81 14404.91 20 22.81
khb05250 19 73.16 14412.45 177 91.09
l152lav 7 2.01 14400.03 7 3.06

lseu 5 20.48 6250.38 54 70.25 Y
markshare1 6 0.00 3737.98 1 0.00
markshare2 7 0.00 14400.40 1 0.00

mas74 11 6.67 14423.24 11 6.96
mas76 10 6.42 14400.15 7 6.44

misc03 4 8.62 7798.57 80 9.79
misc06 16 28.48 14400.01 191 75.39
misc07 5 0.72 6669.73 113 0.88

mkc 34 0.96 14400.04 53 24.39
mod008 5 21.62 14400.64 12 22.89
mod010 5 100.00 14401.19 20 100.00
mod011 21 30.69 14448.30 19 30.69
noswot 14 0.00 506.48 28 0.00 Y

nw04 2 29.75 14400.17 4 29.90
p0033 4 34.42 13.19 65 100.00 Y
p0201 14 0.39 4197.12 74 17.95 Y
p0282 23 3.19 14400.01 140 42.31
p0548 31 60.67 1672.68 115 99.88
p2756 80 56.96 14400.84 435 95.06

pk1 15 0.00 14400.02 3 0.00
pp08a 53 51.44 615.71 98 80.41 Y

pp08acuts 41 31.52 14400.01 50 47.71
qiu 25 1.69 14408.77 16 1.74

qnet1 19 7.18 14400.94 9 7.18
qnet1 o 10 26.21 14402.68 11 26.46

rentacar 13 4.97 14400.60 13 5.62
rgn 12 5.02 3468.94 38 41.96

rout 30 1.40 14416.56 8 1.40
set1ch 121 28.20 14400.00 165 62.84

stein27 21 0.00 2051.46 5 0.00 Y
stein45 16 0.00 14400.01 11 0.00

swath 13 6.37 14400.93 17 12.21
vpm1 15 6.18 648.42 41 17.06 Y

average 24.800 22.596 10467.629 72.382 37.493 24%
geometric 14.983 0.000 4961.177 27.222 0.000 -

Table 5.9: Cuts from all full two-row models directly read from an optimal tableau
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1 Input: A m-row simplex tableau and k, the target number of rows per model
2
3 for each row i of the tableau,
4 build a cluster of 5k − 1 rows having a support most similar to row i
5 end for
6
7 i := 1.
8 while models < MODELS MAX,
9 Find a subset of k − 1 rows in the cluster i such that the k-row model

10 built from that subset and i does not already form a selected model.
11
12 if such a subset exist,
13 build a k-row model from these rows and row i
14 end if
15
16 i := (i+ 1) mod m.
17 end

Algorithm 7: Heuristic selection of multi-row models

of other rows that have a similiar support. Then, it loops through the clusters constructing one multi-row

model with the rows in each one. Our intent with this heuristic is to favor models from rows with similar

supports, while covering all rows of the tableau. Note that the constraints mentioned earlier for each

row to have an integer-constrained basic variable, and for each model to have a fractional-valued basic

variable, are incorporated into the heuristic.

At line 4 of Algorithm 7, we need to define a measure for the similarity of the supports of two rows. We

test two options. Let Sc be the number of columns in which both rows have nonzero coefficients, and

Sd the number of columns in which exactly one row has a nonzero coefficients. Our first option is to

maximize Sc/(Sc + Sd), i.e. the cardinality of the intersection of the supports divided by the cardinality

of the union of the supports. The second option is simply to maximize Sc − Sd, i.e. score positively

columns where both rows have nonzero coefficients and penalize columns where one row has a zero and

the other not.

As Table 5.10 suggests, we adopt Sc−Sd in the rest of this chapter. Indeed, compared to Sc/(Sc +Sd) it

yields more percentage of gap closed, more instances with exact separation, and offers reduced computing

times. Compared to when reading all two-row models from an optimal tableau, the average percentage of

gap closed drops from 37.493% to 35.193%, but the running times are divided by a factor 4 in geometric

mean, and the number of instances with exact separation almost doubles. Table 5.11 presents detailed

results for Sc − Sd.

In Table 5.10 and Table 5.11, MODELS MAX is set to the number m of rows in the formulation of the

problem. In all later tables, MODELS MAX = m
2 . Note that in all the tables in the remainder of this

chapter, each row corresponds to an instance for which every test presented succeeded. For example,

in Table 5.10, the vpm2 does not appear because the computation using all 2-row models failed on that

instance. But in Table 5.11, where the experiment with all 2-row models is not presented, vpm2 appears

with the corresponding data. This may result in slight variations in the testset, and different average
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All 2-row models Heuristic selection, Sc/(Sc + Sd) Heuristic selection, Sc − Sd
name time cuts (t) %gc ex. time cuts (t) %gc ex. time cuts (t) %gc ex.

10teams 14417.29 4 57.14 14431.48 4 57.14 14460.59 4 57.14
air03 0.699894 32 100 Y 1.01285 31 100 Y 1.08284 32 100 Y
air04 14400.84 15 8.60 14400.97 13 7.90 14400.55 15 8.60
air05 14400.98 8 4.63 14400.98 8 4.63 14400.97 8 4.63

arki001 14400.16 7 0.00 14401.20 7 0.00 14400.50 7 0.00
bell3a 513.98 120 59.02 Y 30.79 25 50.49 Y 23.37 29 55.69 Y
bell5 1504.47 34 91.23 Y 488.96 18 20.80 Y 93.83 20 19.32 Y

blend2 3100.16 39 28.20 Y 315.29 10 20.00 Y 337.78 10 20.00 Y
cap6000 14400.96 2 39.91 14400.95 2 39.91 14400.96 2 39.91
danoint 14400.06 65 1.74 12124.39 56 1.74 11614.80 56 1.74

egout 5.29 26 100.00 Y 2.77 29 84.99 Y 1.75 19 98.36 Y
fiber 14400.03 704 86.48 7322.20 383 82.65 3675.17 473 82.65 Y

fixnet6 14400.82 27 33.41 14400.02 43 37.91 8876.15 54 36.54
flugpl 17.21 8 44.52 Y 5.73 7 12.74 Y 10.95 8 44.52 Y

gen 14400.41 9 37.81 14400.18 10 37.81 14400.59 9 37.81
gesa2 o 14400.02 191 45.79 6274.83 270 68.37 Y 4503.62 250 47.96
gesa3 14400.01 246 51.34 14403.57 100 57.53 5002.46 178 56.11

gesa3 o 14402.15 228 59.64 14400.15 107 55.96 13677.70 287 77.81 Y
gt2 14400.49 104 58.33 14400.15 15 56.78 14400.03 92 58.25

harp2 14404.91 20 22.81 14402.02 20 22.81 14401.42 20 22.81
khb05250 14412.45 177 91.09 14403.60 54 80.13 14408.54 177 91.09
l152lav 14400.03 7 3.06 14400.01 4 3.06 14400.36 8 2.68

lseu 6250.38 54 70.25 Y 14400.72 16 50.82 5937.95 47 70.25 Y
markshare1 3737.98 1 0.00 1182.30 1 0.00 1332.16 1 0.00
markshare2 14400.40 1 0.00 3338.39 1 0.00 3884.63 1 0.00

mas74 14423.24 11 6.96 14400.09 11 6.96 14400.34 11 6.96
mas76 14400.15 7 6.44 6141.47 6 6.42 5773.43 6 6.42

misc03 7798.57 80 9.79 61.39 41 8.62 Y 87.83 9 8.62 Y
misc06 14400.01 191 75.39 30.21 13 28.66 Y 142.28 22 48.81 Y
misc07 6669.73 113 0.88 5.24 9 0.72 Y 8.06 13 0.72 Y

mkc 14400.04 53 24.39 14400.74 37 0.96 14403.26 53 24.39
mod008 14400.64 12 22.89 201.26 1 21.62 191.87 1 21.62
mod010 14401.19 20 100.00 14400.19 19 100.00 14400.54 22 100.00
mod011 14448.30 19 30.69 14409.35 16 30.69 14463.60 19 30.69
noswot 506.48 28 0.00 Y 10.11 16 0.00 Y 8.00 15 0.00 Y

nw04 14400.17 4 29.90 14406.33 2 29.75 14400.42 4 29.90
p0033 13.19 65 100.00 Y 8.70 61 100.00 Y 13.89 65 100.00 Y
p0201 4197.12 74 17.95 Y 2814.48 119 17.83 Y 2767.20 34 16.00 Y
p0282 14400.01 140 42.31 8275.55 196 37.60 6508.40 152 41.92
p0548 1672.68 115 99.88 164.52 158 99.88 Y 30.96 116 99.88 Y
p2756 14400.84 435 95.06 14400.05 223 77.13 1295.19 374 77.21 Y

pk1 14400.02 3 0.00 12488.11 1 0.00 12718.23 1 0.00
pp08a 615.71 98 80.41 Y 46.54 77 70.16 Y 24.91 88 76.19 Y

pp08acuts 14400.01 50 47.71 5486.96 41 37.07 4148.46 44 46.86
qiu 14408.77 16 1.74 14401.84 16 1.69 14400.21 29 1.71

qnet1 14400.94 9 7.18 14400.19 9 7.18 14401.49 6 15.76
qnet1 o 14402.68 11 26.46 14402.14 6 26.21 14402.62 11 26.46

rentacar 14400.60 13 5.62 14419.49 11 5.23 14400.10 13 5.23
rgn 3468.94 38 41.96 1445.34 34 25.10 Y 2044.03 31 25.10 Y

rout 14416.56 8 1.40 14400.95 6 1.41 14400.56 9 1.40
set1ch 14400.00 165 62.84 312.62 140 58.84 Y 174.68 153 61.75 Y

stein27 2051.46 5 0.00 Y 10.01 4 0.00 Y 37.44 4 0.00 Y
stein45 14400.01 11 0.00 259.44 3 0.00 Y 256.55 3 0.00 Y

swath 14400.93 17 12.21 14421.51 18 14.01 14400.95 17 12.21
vpm1 648.42 41 17.06 Y 17.92 31 15.95 Y 13.91 26 15.95 Y

average 10467.629 72.382 37.493 24% 8061.371 46.527 32.434 36% 7232.133 57.418 35.193 42%
geometric 4961.177 27.222 0.000 - 1570.310 17.359 0.000 - 1387.383 19.901 0.000 -

Table 5.10: Heuristic selection of models, two options for defining “similar” supports

values, e.g. for the number of GMIs generated, which would not change otherwise.

5.9 Strengthened intersection cuts

Armed with a reasonable heuristic model selector, we can now compare the strength of various relaxations

of a given set of two-row models. In this section we again limit ourselves to two-row models, and test in

more detail the classes of models presented in Chapter 4.
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Heuristic selection, Sc − Sd
name GMIs GMI %gc time cuts (t) %gc ex.

10teams 100 57.14 14460.59 4 57.14
air03 3 100 1.08284 32 100 Y
air04 100 8.60 14400.55 15 8.60
air05 100 4.63 14400.97 8 4.63

arki001 7 0.00 14400.50 7 0.00
bell3a 14 39.03 23.37 29 55.69 Y
bell5 17 14.53 93.83 20 19.32 Y

blend2 5 16.04 337.78 10 20.00 Y
cap6000 2 39.91 14400.96 2 39.91
danoint 32 0.26 11614.80 56 1.74
dcmulti 36 47.80 2371.66 200 59.75 Y

egout 8 31.94 1.75 19 98.36 Y
fiber 22 69.30 3675.17 473 82.65 Y

fixnet6 11 22.26 8876.15 54 36.54
flugpl 7 10.75 10.95 8 44.52 Y

gen 6 1.27 14400.59 9 37.81
gesa2 o 70 30.68 4503.62 250 47.96
gesa3 37 20.48 5002.46 178 56.11

gesa3 o 64 50.54 13677.70 287 77.81 Y
gt2 11 47.22 14400.03 92 58.25

harp2 22 22.81 14401.42 20 22.81
khb05250 19 73.16 14408.54 177 91.09
l152lav 7 2.01 14400.36 8 2.68

lseu 5 20.48 5937.95 47 70.25 Y
markshare1 6 0.00 1332.16 1 0.00
markshare2 7 0.00 3884.63 1 0.00

mas74 11 6.67 14400.34 11 6.96
mas76 10 6.42 5773.43 6 6.42

misc03 4 8.62 87.83 9 8.62 Y
misc06 16 28.48 142.28 22 48.81 Y
misc07 5 0.72 8.06 13 0.72 Y

mkc 34 0.96 14403.26 53 24.39
mod008 5 21.62 191.87 1 21.62
mod010 5 100.00 14400.54 22 100.00
mod011 21 30.69 14463.60 19 30.69

modglob 28 17.28 261.52 35 31.92
noswot 14 0.00 8.00 15 0.00 Y

nw04 2 29.75 14400.42 4 29.90
p0033 4 34.42 13.89 65 100.00 Y
p0201 14 0.39 2767.20 34 16.00 Y
p0282 23 3.19 6508.40 152 41.92
p0548 31 60.67 30.96 116 99.88 Y
p2756 80 56.96 1295.19 374 77.21 Y

pk1 15 0.00 12718.23 1 0.00
pp08a 53 51.44 24.91 88 76.19 Y

pp08acuts 41 31.52 4148.46 44 46.86
qiu 23 1.70 14400.21 29 1.71

qnet1 17 15.76 14401.49 6 15.76
qnet1 o 10 26.21 14402.62 11 26.46

rentacar 13 4.97 14400.10 13 5.23
rgn 12 5.02 2044.03 31 25.10 Y

rout 30 1.40 14400.56 9 1.40
set1ch 121 28.20 174.68 153 61.75 Y

stein27 21 0.00 37.44 4 0.00 Y
stein45 16 0.00 256.55 3 0.00 Y

swath 13 6.37 14400.95 17 12.21
vpm1 15 6.18 13.91 26 15.95 Y
vpm2 21 7.31 71.02 47 33.59 Y

average 24.931 22.823 6904.681 59.310 35.533 43%
geometric 15.423 0.000 1292.591 21.223 0.000 -

Table 5.11: Heuristic selection of models (Sc − Sd)
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basic nonbasic
∈ Z bnd. ∈ Z bnd.

PI
√

× × T

S-free
√ √

× T

lifting
√

×
√

T

PIU
√

× ×
√

Table 5.12: Relaxations;
√

: keep, T: keep tight, ×: drop

Recall that PI is the intersection cut model for which we developed a separator in Chapter 3 in the

two-row case, where in particular

PI = {(x, s) ∈ Z2 × Rn+ : x = f +Rs}.

We can strengthen the intersection cut model by reintroducing bounds on the basic variables x, yielding

PS-free = {(x, s) ∈ S × Rn+ : x = f +Rs}.

We can also exploit the integrality of the nonbasic variables by solving the so-called lifting problem, and

obtain valid inequalities for

Plifting = {(x, s) ∈ Z2 × Rn+ : x = f +Rs, sj ∈ Z for all j ∈ J}.

Finally, taking advantage of upper bounds on the nonbasic variables, we can generate inequalities that

are valid for

PIU = {(x, s) ∈ Z2 × Rn+ : x = f +Rs, s ≤ U}.

If we denote by Pfull a two-row model where we keep all integrality and bound constraints on the variables,

PI consists in dropping from Pfull bounds on the two basic variables, integrality on nonbasic variables, and

any non-binding bound on the nonbasic variables. This is shown in Table 5.12, along with the constraints

that are reintroduced in PS-free, Plifting and PIU .

Before we get to its various strengthenings, we briefly focus on the two-row model PI for which we already

presented results in Chapter 3. Using a generic separator on the same model will let us crosscheck our

implementations, and will provide a useful comparison point for confronting the speed of our generic

separator with a fast, single-purpose algorithm. Table 5.13 enables such comparison.

We observe that despite the two implementations using different sets of tolerances and thresholds, the

results are consistent within 0.05% of gap closed. That is, within the tolerance, when one of the methods

provides exact separation at G %gc, the other does not exceed G %gc, and when both method provide

exact separation, they both close the same amount of gap.

One exception is seymour, where the separator presented in this chapter does not close any gap on

top of GMIs, and claims that none more could be closed with valid inequalities, while our intersection

cut separator closes four more percents of gap. This could be caused by an invalid inequality being

generated by our intersection cut separator due to numerically unsafe coefficients, or a valid inequality

being discarded by our generic separator because of numerical safeguards.
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PI via intersection cut separator PI via generic separator
name GMIs GMI %gc time cuts (t) %gc ex. time cuts (t) %gc ex.

10teams 100 57.14 3.23 4 57.14 Y 7.67 4 57.14 Y
air04 100 8.60 61.16 18 8.66 14401.86 16 8.60
air05 100 4.63 45.72 8 4.78 Y 3756.06 8 4.78 Y

arki001 7 0.00 4.23 12 0.00 14402.53 13 3.97
bell3a 14 39.03 0.05 9 52.48 Y 12.51 10 52.53 Y
bell5 17 14.53 0.05 8 14.92 Y 7.71 8 14.92 Y

blend2 5 16.04 0.06 3 16.90 Y 94.51 3 16.90 Y
cap6000 2 39.91 1.15 6 40.07 Y 14400.65 3 40.07
danoint 31 0.26 5.69 39 1.74 14400.03 39 1.74
dcmulti 36 47.80 0.37 44 49.92 Y 261.05 40 49.93

egout 8 31.94 0.04 8 60.54 Y 7.31 8 60.54 Y
fiber 22 69.30 0.19 26 71.08 Y 353.75 19 69.31

fixnet6 11 22.26 0.16 18 30.64 Y 302.24 18 30.57
flugpl 7 10.75 0.02 7 13.02 Y 4.05 7 13.04 Y

gen 6 1.27 0.20 13 9.53 714.17 29 6.82
gesa2 40 27.56 1.38 91 56.48 8003.63 108 56.58

gesa2 o 70 30.68 1.44 136 32.87 Y 500.50 126 32.87 Y
gesa3 37 20.48 1.38 142 47.06 Y 3057.59 110 36.68

gesa3 o 64 50.54 1.54 146 69.36 Y 2345.12 123 61.78
gt2 11 47.22 0.03 8 47.22 Y 1.74 8 47.22 Y

harp2 22 22.81 0.39 20 25.20 1407.92 22 25.49 Y
khb05250 19 73.16 0.04 15 73.16 Y 1.00 15 73.16 Y
l152lav 7 2.01 1.05 14 2.04 3795.00 12 2.04

lseu 5 20.48 0.02 8 21.01 Y 6.23 8 21.01 Y
mas74 11 6.67 0.03 7 6.67 Y 0.25 7 6.67 Y
mas76 10 6.42 0.03 6 6.42 Y 0.23 6 6.42 Y

misc03 4 8.62 0.07 7 8.62 Y 0.35 7 8.62 Y
misc06 16 28.48 0.28 17 48.27 116.79 16 47.44
misc07 5 0.72 0.08 9 0.72 Y 0.85 9 0.72 Y
mitre 101 50.71 4.09 476 81.71 3802.97 490 81.71

mkc 34 0.96 2.73 89 2.64 Y 14400.01 63 2.61
mod008 5 21.62 0.12 1 21.62 Y 0.91 1 21.62 Y
mod011 21 30.69 3.74 41 36.06 Y 14400.16 24 32.24

modglob 28 17.28 0.30 29 26.13 Y 1654.06 27 25.82
nw04 2 29.75 1.87 2 29.75 Y 26.69 2 29.75 Y

p0033 4 34.42 0.01 5 34.81 Y 0.78 5 34.81 Y
p0201 14 0.39 0.06 6 6.52 Y 92.69 22 0.39
p0282 23 3.19 0.22 22 4.63 Y 375.36 17 4.63
p0548 31 60.67 0.07 33 60.72 Y 36.07 33 60.72
p2756 80 56.96 0.53 80 58.33 Y 29.93 80 58.33
pp08a 53 51.44 0.08 78 75.18 Y 538.10 61 60.57

pp08acuts 41 31.52 0.52 40 38.78 Y 507.79 36 35.02
qiu 25 1.69 1.63 22 1.87 14400.20 16 1.74

qnet1 19 7.18 4.23 18 14.28 Y 3512.39 21 10.44
qnet1 o 10 26.21 0.44 15 31.49 Y 653.89 18 30.66

rentacar 13 4.97 11.72 11 5.45 14402.83 10 4.97
rgn 12 5.02 0.02 8 5.02 Y 129.28 5 5.02

rout 30 1.40 3.69 8 1.51 Y 200.03 8 1.51 Y
set1ch 121 28.20 0.17 126 60.63 Y 15.68 126 60.64 Y

seymour 60 4.98 13.33 11 8.43 Y 884.90 19 4.98 Y
swath 13 6.37 1.24 40 6.65 Y 14400.06 28 6.50
vpm1 15 6.18 0.09 18 14.56 Y 140.71 18 14.56
vpm2 21 7.31 0.13 22 17.15 Y 9790.34 21 17.15

average 29.491 22.612 3.417 38.679 28.688 79% 3335.078 36.849 27.622 42%
geometric 18.150 0.000 0.389 17.524 0.000 - 194.223 17.092 15.266 -

Table 5.13: crosschecking the separators
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PI PS-free Plifting

name GMIs GMI %gc cuts (t) %gc ex. cuts (t) %gc ex. cuts (t) %gc ex.
10teams 100 57.14 4 57.14 Y 4 57.14 Y 4 57.14

air04 100 8.60 18 8.66 23 8.78 15 8.60
air05 100 4.63 8 4.78 Y 12 5.12 8 4.63

bell3a 14 39.03 9 52.48 Y 38 54.90 Y 10 52.45
bell5 17 14.53 8 14.92 Y 10 14.93 Y 10 15.11 Y

blend2 5 16.04 3 16.90 Y 5 17.03 Y 4 17.22 Y
cap6000 2 39.91 6 40.07 Y 6 40.07 2 39.91
danoint 32 0.26 39 1.74 64 1.74 63 1.74
dcmulti 36 47.80 44 49.92 Y 50 54.83 Y 50 51.13

egout 8 31.94 8 60.54 Y 9 61.67 Y 8 60.54 Y
fiber 22 69.30 26 71.08 Y 27 71.09 Y 15 69.30

fixnet6 11 22.26 18 30.64 Y 19 31.18 Y 18 30.57
flugpl 7 10.75 7 13.02 Y 7 13.00 6 42.04 Y

gen 6 1.27 13 9.53 18 24.56 Y 17 8.13
gesa2 40 27.56 91 56.48 134 56.87 59 33.99

gesa2 o 70 30.68 136 32.87 Y 141 32.75 92 35.17
gesa3 37 20.48 142 47.06 Y 252 54.23 40 32.82

gesa3 o 64 50.54 146 69.36 Y 170 72.88 103 58.68
gt2 11 47.22 8 47.22 Y 11 49.63 Y 9 51.11

harp2 22 22.81 20 25.20 23 26.65 Y 20 22.81
khb05250 19 73.16 15 73.16 Y 15 73.16 Y 15 73.16 Y
l152lav 7 2.01 14 2.04 19 8.52 5 2.01

lseu 5 20.48 8 21.01 Y 8 21.04 Y 7 21.06
mas74 11 6.67 7 6.67 Y 7 6.67 Y 7 6.67
mas76 10 6.42 6 6.42 Y 6 6.42 Y 6 6.42

misc03 4 8.62 7 8.62 Y 7 8.62 Y 7 8.62 Y
misc06 16 28.48 17 48.27 18 48.81 Y 16 47.44
misc07 5 0.72 9 0.72 Y 12 0.72 Y 9 0.72 Y

mkc 34 0.96 89 2.64 Y 107 26.99 Y 35 0.96
mod008 5 21.62 1 21.62 Y 1 21.62 Y 2 21.79
mod011 21 30.69 41 36.06 Y 16 30.69 22 32.24

modglob 28 17.28 29 26.13 Y 35 26.48 29 26.61
nw04 2 29.75 2 29.75 Y 2 29.75 2 29.75 Y

p0033 4 34.42 5 34.81 Y 7 44.28 Y 6 45.83
p0201 14 0.39 6 6.52 Y 4 8.49 Y 10 1.34
p0282 23 3.19 22 4.63 Y 24 13.82 Y 8 4.41
p0548 31 60.67 33 60.72 Y 31 61.01 Y 35 64.30
p2756 80 56.96 80 58.33 Y 79 67.06 79 59.44
pp08a 53 51.44 78 75.18 Y 83 75.18 61 60.57

pp08acuts 41 31.52 40 38.78 Y 46 41.02 34 38.31
qiu 25 1.69 22 1.87 40 2.05 16 1.74

qnet1 19 7.18 18 14.28 Y 70 24.22 7 7.50
qnet1 o 10 26.21 15 31.49 Y 52 39.35 Y 9 28.87

rentacar 13 4.97 11 5.45 15 5.47 Y 10 4.97
rgn 12 5.02 8 5.02 Y 9 5.02 5 5.02

rout 30 1.40 8 1.51 Y 61 6.87 7 1.51
set1ch 121 28.20 126 60.63 Y 143 60.72 Y 126 60.64 Y

seymour 57 8.05 11 8.43 Y 20 11.37 11 8.43 Y
swath 13 6.37 40 6.65 Y 47 6.66 16 6.37
vpm1 15 6.18 18 14.56 Y 19 14.95 Y 18 14.56
vpm2 21 7.31 22 17.15 Y 27 22.00 Y 21 17.15

average 28.490 22.564 30.627 28.210 82% 40.255 30.747 57% 23.412 27.480 20%

Table 5.14: Strengthenings of PI , part 1

Regarding running times, the intersection cut separator from Chapter 3 is almost three orders of magni-

tude faster than the generic separator presented here, while performing exact separation on almost three

times as many instances.

Table 5.14 and Table 5.15 show the gap closed with the same selection of two-row models, but different

relaxations, namely PI , PS-free, Plifting, PIU and Pfull. Unfortunately, it is extremely hard for Algorithm 4

to separate from Plifting, as indicated by the very low number of instances with exact separation for these

models. Intuitively this can be explained by the fact that to build Plifting from Pfull, we drop a number

of bound constraints on the variables, but keep all integrality constraints (see Table 5.12). And while

all the difficulty in solving MIPs comes from the integrality of the variables, the bound constraints are
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PI PIU Pfull

name GMIs GMI %gc cuts (t) %gc ex. cuts (t) %gc ex. cuts (t) %gc ex.
10teams 101 57.14 4 57.14 Y 4 57.14 Y 4 57.14

air04 100 8.60 18 8.66 19 8.67 15 8.60
air05 100 4.63 8 4.78 Y 8 4.78 Y 8 4.63

arki001 7 0.00 12 0.00 15 0.00 7 0.00
bell3a 14 39.03 9 52.48 Y 10 52.91 Y 18 55.69 Y
bell5 17 14.53 8 14.92 Y 11 19.25 Y 13 19.32 Y

blend2 5 16.04 3 16.90 Y 11 19.81 Y 10 20.00 Y
cap6000 2 39.91 6 40.07 Y 2 39.91 2 39.91
danoint 31 0.26 39 1.74 82 1.74 58 1.74
dcmulti 36 47.80 44 49.92 Y 70 52.59 Y 104 58.05 Y

egout 8 31.94 8 60.54 Y 15 62.24 Y 16 62.24 Y
fiber 22 69.30 26 71.08 Y 41 71.72 Y 262 82.39 Y

fixnet6 11 22.26 18 30.64 Y 34 35.35 54 36.54
flugpl 7 10.75 7 13.02 Y 8 13.04 6 43.38 Y

gen 6 1.27 13 9.53 12 9.92 Y 9 37.81
gesa2 o 70 30.68 136 32.87 Y 224 33.18 227 36.08 Y
gesa3 37 20.48 142 47.06 Y 210 47.71 Y 178 56.11

gesa3 o 64 50.54 146 69.36 Y 122 53.66 224 77.74
gt2 11 47.22 8 47.22 Y 12 51.02 Y 58 58.37

harp2 22 22.81 20 25.20 27 23.05 20 22.81
khb05250 19 73.16 15 73.16 Y 140 91.43 Y 132 91.43 Y
l152lav 7 2.01 14 2.04 18 2.57 5 3.06

lseu 5 20.48 8 21.01 Y 8 21.04 Y 18 67.62 Y
mas74 11 6.67 7 6.67 Y 9 6.72 Y 22 11.53
mas76 10 6.42 6 6.42 Y 6 6.43 Y 6 6.42

misc03 4 8.62 7 8.62 Y 7 8.62 Y 9 8.62 Y
misc06 16 28.48 17 48.27 20 48.27 22 48.81 Y
misc07 5 0.72 9 0.72 Y 9 0.72 Y 13 0.72 Y
mitre 101 50.71 476 81.71 246 50.71 666 73.61

mkc 34 0.96 89 2.64 Y 143 0.99 53 24.39
mod008 5 21.62 1 21.62 Y 3 21.64 Y 1 21.62
mod011 21 30.69 41 36.06 Y 17 30.69 19 30.69

modglob 28 17.28 29 26.13 Y 33 26.13 42 30.99
nw04 2 29.75 2 29.75 Y 2 29.75 4 29.90

p0033 4 34.42 5 34.81 Y 10 38.02 Y 32 71.45 Y
p0201 14 0.39 6 6.52 Y 9 6.52 Y 24 15.73 Y
p0282 23 3.19 22 4.63 Y 95 14.97 194 41.51 Y
p0548 31 60.67 33 60.72 Y 77 87.87 96 99.88
p2756 80 56.96 80 58.33 Y 123 69.95 Y 323 77.21 Y
pp08a 53 51.44 78 75.18 Y 61 60.57 84 75.18 Y

pp08acuts 41 31.52 40 38.78 Y 39 35.60 44 44.13
qiu 23 1.70 22 1.87 17 1.80 29 1.71

qnet1 17 15.76 18 14.28 Y 10 7.18 6 15.76
qnet1 o 10 26.43 15 31.49 Y 21 29.47 12 26.97

rentacar 13 4.97 11 5.45 10 6.45 12 5.25
rgn 12 5.02 8 5.02 Y 13 5.02 Y 30 25.10 Y

rout 30 1.40 8 1.51 Y 8 1.41 8 1.40
set1ch 121 28.20 126 60.63 Y 142 60.65 Y 143 60.75 Y

seymour 60 4.98 11 8.43 Y 55 5.06 24 9.12
swath 13 6.37 40 6.65 Y 39 6.61 17 12.21
vpm1 15 6.18 18 14.56 Y 26 15.35 Y 26 15.95 Y
vpm2 21 7.31 22 17.15 Y 40 22.99 Y 39 29.38 Y

average 29.231 22.686 37.673 28.153 81% 46.019 28.440 48% 66.308 35.705 42%

Table 5.15: Strengthenings of PI , part 2
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PI PS-free Plifting PIU Pfull

name GMIs GMI %gc cuts (t) %gc cuts (t) %gc cuts (t) %gc cuts (t) %gc cuts (t) %gc
bell5 17 14.53 8 14.92 10 14.93 10 15.11 11 19.25 13 19.32

blend2 5 16.04 3 16.90 5 17.03 4 17.22 11 19.81 10 20.00
egout 8 31.94 8 60.54 9 61.67 8 60.54 15 62.24 16 62.24

khb05250 19 73.16 15 73.16 15 73.16 15 73.16 140 91.43 132 91.43
misc03 4 8.62 7 8.62 7 8.62 7 8.62 7 8.62 9 8.62
misc07 5 0.72 9 0.72 12 0.72 9 0.72 9 0.72 13 0.72
set1ch 121 28.20 126 60.63 143 60.72 126 60.64 142 60.65 143 60.75

average 25.571 24.744 25.143 33.641 28.714 33.836 25.571 33.716 47.857 37.531 48.000 37.583

Table 5.16: Strengthings of PI , exact separation

PI PS-free PIU Pfull

name GMIs GMI %gc cuts (t) %gc cuts (t) %gc cuts (t) %gc cuts (t) %gc
bell3a 14 39.03 9 52.48 38 54.90 10 52.91 18 55.69
bell5 17 14.53 8 14.92 10 14.93 11 19.25 13 19.32

blend2 5 16.04 3 16.90 5 17.03 11 19.81 10 20.00
dcmulti 36 47.80 44 49.92 50 54.83 70 52.59 104 58.05

egout 8 31.94 8 60.54 9 61.67 15 62.24 16 62.24
fiber 22 69.30 26 71.08 27 71.09 41 71.72 262 82.39

khb05250 19 73.16 15 73.16 15 73.16 140 91.43 132 91.43
lseu 5 20.48 8 21.01 8 21.04 8 21.04 18 67.62

misc03 4 8.62 7 8.62 7 8.62 7 8.62 9 8.62
misc07 5 0.72 9 0.72 12 0.72 9 0.72 13 0.72
p0033 4 34.42 5 34.81 7 44.28 10 38.02 32 71.45
p0201 14 0.39 6 6.52 4 8.49 9 6.52 24 15.73

set1ch 121 28.20 126 60.63 143 60.72 142 60.65 143 60.75
vpm1 15 6.18 18 14.56 19 14.95 26 15.35 26 15.95
vpm2 21 7.31 22 17.15 27 22.00 40 22.99 39 29.38

average 20.667 26.541 20.933 33.535 25.400 35.229 36.600 36.257 57.267 43.956

Table 5.17: Strengthings of PI (except lifting), exact separation

very useful to methods like the branch-and-bound to reduce the enumeration space. As a consequence,

the average percentage of gap closed is even lower for the Plifting models than for the weaker PI models,

greatly impairing the meaningfulness of the results.

We can avoid this issue by looking only at instances for which the separation is exact for all of the tests,

at the cost of vastly reducing the testset. On the seven instances of Table 5.16, two-row intersection

cuts close nine more percents of gap (totalling 33.641%) on top of GMIs alone (24.744%), and fully-

strengthened two-row cuts add four more percents (37.583%). Individual strengthenings do not seem to

bring a lot of improvement over intersection cuts. Indeed, PIU seems to close almost as much gap as Pfull

in Table 5.16, but enlarging the testset (by omitting the column Plifting), we observe that PIU is only

promising for a few instances (see Table 5.17). The more representative testset in Table 5.15 confirms

that trend, with PIU closing only 28.440% of gap, up from 28.153% for PI . Contrary to Plifting, PIU is not

unfairly disadvantaged by our separator, as is confirmed by the gap closed by Pfull jumping to 35.705%

despite featuring fewer instances with exact separation than PIU .

While the situation for Plifting is less obvious, Table 5.14 and Table 5.15 show that on average on MI-

PLIB 3, separating cuts from an optimal tableau, GMIs close 22.686% of gap, two-row intersection cuts

close 28.153%, partially strengthened two-row intersection cuts close around 30%, and fully strengthened

two-row cuts close 35.705%. We concluded in Chapter 3 that two-row intersection cuts were not strong

enough to consistently beat GMIs if considering GMIs from linear combinations of rows of the simplex

tableau. The results in this chapter tend to show that only a fully-strengthened intersection cut model
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could be significantly stronger than PI , and thus represent a possibility for generating useful cuts beyond

GMIs.

5.10 Cuts from several tableaux

In all the computations performed so far, we limited ourselves to rank-1 valid inequalities from one

(optimal) simplex tableau. We mentioned in the previous section that most of the two-row cuts we

generated in Chapter 3 could be obtained as GMIs from linear combinations of rows of the tableau. And

the various simplex tableaux describing a linear problem are precisely linear combinations of the rows of

each other. Moreover, we noted in Chapter 2 that the most-violated inequality for a simple disjunction

on one variable could be obtained through the lift-and-project method as a GMI from a specific simplex

tableau. This motivates the need to reproduce our results for more than one basis of the LP relaxation,

i.e. for cuts from more than one tableau.

In particular, the small but consistent advantage that two-row intersection cuts enjoy over GMIs read

directly from the tableau in terms of gap closure could vanish in the presence of GMIs from other bases.

This could be the case, for example, if two-row cuts close more gap only because so many more of them

can be generated. Or, to the contrary, the two-row cuts could become significantly stronger when read

from several bases.

In order to answer these questions, we need a method to explore different bases of the LP relaxation. We

use the relax-and-cut method proposed by Fischetti and Salvagnin [43] in the context of the generation

of GMI cuts. It is a simple way to find feasible bases of the LP relaxation, and it has been successfully

used as one of several main components to approximate the first split closure [42].

The method consists in computing a round of GMIs from the optimal tableau, then adding them as

Lagrangean penalties to the objective function instead of as additional constraints to the feasible region.

When re-optimizing over the LP relaxation with this modified objective function, one may obtain a

different basis. The process can be iterated in order to find more bases. We refer to [43] for a more

detailed exposition of the method.

Table 5.18 shows the results for two-row intersection cuts. From one basis, GMIs close 23.084% of gap

on average, and two-row cuts close 29.589%. When using relax-and-cut, we generate more GMIs and

two-row cuts, as we compute them from up to 21 different bases. Then, GMIs close 36.189% and two-row

cuts close 42.680%. Similar results hold for cuts from the full two-row model (see Table 5.19). From one

basis, GMIs close 23.282% of gap on average, and strengthened two-row cuts close 36.080%. From up to

21 different bases, GMIs close 34.970% and strengthened two-row cuts close 47.277%.

Contrary to our earlier suggestions, the strengthening provided by two-row cuts on top of GMIs seems to

consistently carry over to when generating cuts from several bases, both in the case of intersection cuts

and in the case of cuts from the full model.



5.11. More than two rows 113

2-row intersection cuts from 1 basis 2-row intersection cuts from up to 21 basis
name GMIs GMI %gc bases cuts (t) %gc ex. GMIs GMI %gc bases cuts (t) %gc ex.

bell3a 14 39.03 1 9 52.48 Y 28 54.17 21 24 59.92 Y
bell5 17 14.53 1 8 14.92 Y 23 34.66 21 40 35.63 Y

blend2 5 16.04 1 3 16.90 Y 14 20.70 21 7 23.48 Y
cap6000 2 39.91 1 6 40.07 Y 24 45.07 21 12 45.26 Y
danoint 31 0.26 1 39 1.74 70 0.63 21 22 1.74
dcmulti 36 47.80 1 44 49.92 Y 77 64.28 21 74 68.10 Y

egout 8 31.94 1 8 60.54 Y 20 50.27 21 16 95.28 Y
fiber 22 69.30 1 26 71.08 Y 43 77.66 21 40 78.00 Y

fixnet6 11 22.26 1 18 30.64 Y 29 32.98 21 42 47.46 Y
flugpl 7 10.75 1 7 13.02 Y 8 11.30 21 7 13.11 Y

gen 6 1.27 1 13 9.53 28 40.11 21 30 40.28 Y
gesa2 40 27.56 1 91 56.48 104 35.24 21 198 37.63

gesa2 o 70 30.68 1 136 32.87 Y 162 40.45 21 249 58.51
gesa3 37 20.48 1 142 47.06 Y 55 33.70 21 215 49.69

gesa3 o 64 50.54 1 146 69.36 Y 118 54.70 21 422 69.81
gt2 11 47.22 1 8 47.22 Y 32 58.12 21 27 58.17 Y

harp2 22 22.81 1 20 25.20 101 31.30 21 36 32.72
khb05250 19 73.16 1 15 73.16 Y 40 86.93 21 40 90.94 Y
l152lav 7 2.01 1 14 2.04 38 16.65 21 17 16.97 Y

lseu 5 20.48 1 8 21.01 Y 39 40.92 21 20 40.92 Y
mas74 11 6.67 1 7 6.67 Y 28 6.98 21 8 6.98 Y
mas76 10 6.42 1 6 6.42 Y 53 6.67 21 6 6.67 Y

misc03 4 8.62 1 7 8.62 Y 17 17.59 21 25 17.59 Y
misc06 16 28.48 1 17 48.27 24 44.72 21 42 88.62
misc07 5 0.72 1 9 0.72 Y 14 0.72 21 13 0.72 Y
mitre 101 50.71 1 476 81.71 315 83.55 21 950 83.55 Y

mkc 34 0.96 1 89 2.64 Y 127 30.36 21 98 34.30
mod008 5 21.62 1 1 21.62 Y 33 35.89 21 7 35.93 Y
mod011 21 30.69 1 41 36.06 Y 158 40.70 21 130 46.76

modglob 28 17.28 1 29 26.13 Y 91 50.63 21 70 59.21 Y
nw04 2 29.75 1 2 29.75 Y 7 66.08 21 16 66.08 Y

p0033 4 34.42 1 5 34.81 Y 16 53.76 21 9 53.76 Y
p0201 14 0.39 1 6 6.52 Y 52 13.88 21 175 18.83 Y
p0282 23 3.19 1 22 4.63 Y 77 9.93 21 31 12.42 Y
p0548 31 60.67 1 33 60.72 Y 79 82.92 21 87 83.46 Y
p2756 80 56.96 1 80 58.33 Y 147 95.62 21 144 95.85 Y
pp08a 53 51.44 1 78 75.18 Y 72 59.67 2 96 85.19 Y

pp08acuts 41 31.52 1 40 38.78 Y 41 31.52 2 42 39.57 Y
qiu 25 1.69 1 22 1.87 126 6.12 21 67 6.42 Y

qnet1 19 7.18 1 18 14.28 Y 112 31.78 21 36 32.46 Y
qnet1 o 10 26.21 1 15 31.49 Y 46 45.76 21 53 54.87 Y

rentacar 13 4.97 1 11 5.45 16 5.09 21 16 5.51
rgn 12 5.02 1 8 5.02 Y 88 35.32 21 30 38.30 Y

rout 30 1.40 1 8 1.51 Y 60 5.97 21 20 7.82 Y
set1ch 121 28.20 1 126 60.63 Y 155 29.02 21 154 60.16 Y

seymour 57 8.05 1 11 8.43 Y 159 9.43 21 55 9.43 Y
swath 13 6.37 1 40 6.65 Y 77 20.88 13 59 20.88
vpm1 15 6.18 1 18 14.56 Y 32 9.06 21 42 23.22 Y
vpm2 21 7.31 1 22 17.15 Y 58 13.82 21 55 33.15

average 25.571 23.084 1.000 40.980 29.589 82% 68.020 36.189 20.061 83.143 42.680 76%

Table 5.18: Relax and cut: two-row intersection cuts

5.11 More than two rows

We have focused on two-row cuts so far because we have comparison points for them that are better

understood than in the general multi-row case. Our separator however is not limited to two-row cuts,

and we present in this section results with more than two rows.

To simplify the presentation, we only cover the k-row extension of the Pfull model. Tables 5.20, 5.21, 5.22

and 5.23 show all the results for 1-, 2-, 3-, 4-, 5-, 6-, 7-, 10- and 15-row cuts.

We first focus on the speed of our separator. The computations were performed on 55 instances, as

we further removed from MIPLIB 3 the instances for which one round of GMIs closes 100% gap, and

the instances for which two-row cuts from all the pairs of rows do not close any more gap than GMIs.
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Pfull from 1 basis Pfull from up to 21 basis
name GMIs GMI %gc bases cuts (t) %gc ex. GMIs GMI %gc bases cuts (t) %gc ex.

bell3a 14 39.03 1 18 55.69 Y 28 54.17 21 24 59.92 Y
bell5 17 14.53 1 13 19.32 Y 23 34.66 21 19 50.33 Y

blend2 5 16.04 1 10 20.00 Y 14 20.70 21 22 26.63 Y
cap6000 2 39.91 1 2 39.91 24 45.07 21 8 45.07
danoint 31 0.26 1 58 1.74 62 0.64 21 46 1.74
dcmulti 36 47.80 1 104 58.05 Y 77 64.28 21 124 78.26

egout 8 31.94 1 16 62.24 Y 20 50.27 21 38 98.04 Y
fiber 22 69.30 1 262 82.39 Y 43 77.66 21 74 79.12

fixnet6 11 22.26 1 54 36.54 29 32.98 21 45 42.55
flugpl 7 10.75 1 6 43.38 Y 8 11.30 21 8 71.68 Y
gesa2 o 70 30.68 1 227 36.08 Y 162 40.45 21 285 47.60
gesa3 37 20.48 1 178 56.11 55 33.70 21 239 70.23

gesa3 o 64 50.54 1 224 77.74 118 54.70 21 472 84.01
gt2 11 47.22 1 58 58.37 28 58.12 21 46 60.14

harp2 22 22.81 1 20 22.81 101 31.30 21 30 31.30
khb05250 19 73.16 1 132 91.43 Y 40 86.93 21 96 95.52
l152lav 7 2.01 1 5 3.06 38 16.65 21 20 16.98

mas74 11 6.67 1 22 11.53 28 6.98 21 8 6.98
mas76 10 6.42 1 6 6.42 53 6.67 21 6 6.67

misc03 4 8.62 1 9 8.62 Y 17 17.59 21 56 17.59 Y
misc06 16 28.48 1 22 48.81 Y 24 44.72 21 63 91.67
misc07 5 0.72 1 13 0.72 Y 14 0.72 21 28 0.72

mkc 34 0.96 1 53 24.39 127 30.36 21 84 42.60
mod008 5 21.62 1 1 21.62 33 35.89 21 10 36.21

modglob 28 17.28 1 42 30.99 91 50.63 21 143 70.39
nw04 2 29.75 1 4 29.90 20 66.08 21 13 68.26

p0033 4 34.42 1 32 71.45 Y 16 53.76 21 86 100.00 Y
p0201 14 0.39 1 24 15.73 Y 52 13.88 21 53 15.18
p0282 23 3.19 1 194 41.51 Y 77 9.93 21 37 15.32
p0548 31 60.67 1 96 99.88 79 82.92 21 205 100.00 Y
p2756 80 56.96 1 323 77.21 Y 145 95.62 21 164 96.90
pp08a 53 51.44 1 84 75.18 Y 71 58.13 2 104 82.72 Y

pp08acuts 41 31.52 1 44 44.13 41 31.52 2 52 43.49
qiu 23 1.70 1 29 1.71 132 7.94 21 40 8.01

qnet1 17 15.76 1 6 15.76 112 31.78 21 32 31.84
qnet1 o 10 26.43 1 12 26.97 46 45.76 21 27 45.77

rentacar 13 4.97 1 12 5.25 16 5.09 21 14 5.09
rout 30 1.40 1 8 1.40 83 9.39 21 21 9.42

set1ch 121 28.20 1 143 60.75 Y 155 29.02 21 168 60.43
seymour 60 4.98 1 24 9.12 128 12.01 21 30 12.18

swath 13 6.37 1 17 12.21 77 20.88 13 51 32.07
vpm1 15 6.18 1 26 15.95 Y 31 9.06 21 94 25.61 Y
vpm2 21 7.31 1 39 29.38 Y 58 13.82 21 116 48.68 Y

average 24.814 23.282 1.000 62.140 36.080 47% 60.372 34.970 19.930 76.767 47.277 26%

Table 5.19: Relax and cut: full two-row model

Figure 5.3 shows the number of instances for which a result is reported (i.e. no memory exhaustion or

dangerous numerical instability occurs), and the number of instances for which the separation is exact.

The latter number quickly drops when going from 1- to 5-row cuts, but then stays around 10 from 5-

through 15-row cuts. Figure 5.4 shows the geometric mean of the running times over the 42 instances

for which a result was reported in every test (i.e. in the 1-row through to the 15-row test). Computing

times indeed increase with the number of rows, but up to k = 15, we do not see yet the exponential

growth of the complexity that is bound to occur for larger values of k (since the problem of separating

over mixed-integer sets is NP-hard).

On the same 42 instances, the average of the percentage of gap closed by the k-row cuts is plotted in

Figure 5.5. Beyond k = 5, that value does not seem to reach above 38%, indicating that there would be

limited interest in separating k-row cuts with 5 ≤ k ≤ 15. Of course, this could be due to our separator

being unable to separate as many cuts for the models with more rows, but Figure 5.6, considering only

the few instances with exact separation across all tests, provides clues that this may not be the case.
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Figure 5.5: Average percentage of gap closed on 42 instances

Figure 5.7 on the other hand underlines a phenomenon that has important implications in practice. It

displays, for each value of k, the average number of cuts generated by our separator and the number

among them that are tight at x∗ at the end of Algorithm 6. Recall that the number of k-row models

considered is at most m
2 independently of k. The number of cuts that are tight at the end stays around

50 in average and varies very little for the different values of k. Meanwhile, the number of cuts that had

to be generated raises steadily with increasing k. This means that when generating multi-row cuts with

more rows, one needs to compute many more cuts, indicating that the complexity of the facial structure

of multi-row models may raise one more hurdle for the use of multi-row cuts with many rows.
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1-row cuts 2-row cuts 3-row cuts
name GMIs %gc time cuts(t) %gc ex. time cuts(t) %gc ex. time cuts (t) %gc ex.

10teams 101 57.14 14450.74 4 57.14 14425.15 4 57.14 14417.16 4 57.14
air04 100 7.90 1064.99 13 7.90 1270.79 13 7.90 2918.35 13 7.90
air05 101 4.63 3538.77 8 4.63 14400.01 8 4.63 14401.00 8 4.63

arki001 7 0.00 14400.54 10 0.99 14400.23 11 0.00 14402.71 11 0.00
bell3a 14 39.03 0.19 8 39.35 Y 38.09 17 55.69 Y 100.28 21 54.90
bell5 17 14.53 24.73 30 18.71 Y 87.47 15 19.32 Y 68.42 17 20.50 Y

blend2 5 16.04 7.61 3 16.47 2213.82 9 20.00 Y 10416.10 21 20.34 Y
cap6000 2 39.91 14400.30 2 39.91 14400.45 2 39.91 14400.02 2 39.91
danoint 32 0.26 35.00 5 0.26 14400.39 5 0.26 14400.16 5 0.26
dcmulti 36 47.80 7107.89 43 50.90 Y 14400.12 55 53.22 14400.02 47 52.22

egout 8 31.94 0.05 9 36.39 Y 0.40 14 62.24 Y 0.64 16 84.97 Y
fast0507 101 1.64 14401.08 8 1.64 14400.09 8 1.64 14400.42 8 1.64

fiber 22 69.20 43.22 62 73.24 Y 617.58 198 81.34 Y 1418.19 194 81.34 Y
fixnet6 11 22.26 9798.18 11 22.78 14400.08 14 22.40 14400.89 10 22.33
flugpl 7 10.75 0.05 4 10.75 Y 1.65 6 43.38 Y 5.66 7 87.91 Y

gen 6 1.27 0.33 6 1.27 Y 2868.59 40 50.81 14400.00 95 82.58
gesa2 o 70 30.68 54.39 94 33.07 Y 997.61 195 36.08 Y 2239.72 222 50.61
gesa3 37 20.48 81.42 91 21.90 Y 14400.02 107 42.79 14400.01 172 35.91

gesa3 o 64 50.54 438.35 123 50.73 14400.03 246 69.68 14400.15 185 63.68
gt2 11 47.22 3163.57 20 56.78 14400.16 39 58.05 14400.29 39 57.61

harp2 22 22.81 14400.41 20 22.81 14403.60 20 22.81 14401.06 20 22.81
khb05250 19 73.16 14400.07 34 82.12 14400.28 26 80.28 14400.76 27 80.54
l152lav 7 2.01 14400.21 10 5.88 14400.03 6 3.14 14400.55 5 3.06

lseu 5 20.48 67.26 52 23.37 416.03 18 67.62 Y 881.00 24 69.80
mas74 11 6.67 835.86 24 8.85 3055.31 8 7.04 1271.02 7 6.67
mas76 10 6.42 561.06 26 8.30 1184.28 6 6.42 1119.62 6 6.42

misc03 4 8.62 0.06 7 8.62 Y 58.21 9 8.62 Y 84.07 11 8.62 Y
misc06 16 28.48 0.17 13 28.48 Y 14401.48 17 48.81 14400.11 19 48.81
misc07 5 0.72 0.17 9 0.72 Y 4.31 13 0.72 Y 29.56 12 0.72 Y
mitre 101 50.71 14407.23 567 76.47 14410.88 657 73.61 14423.54 602 67.33

mkc 34 0.96 14400.59 48 2.22 14400.99 44 0.97 14400.38 51 1.04
mod008 5 21.62 206.97 5 21.85 Y 87.25 1 21.62 1203.54 1 21.62
mod011 21 30.69 14432.43 16 30.69 14425.86 16 30.69 14413.75 16 30.69

modglob 28 17.28 0.86 18 18.06 Y 2844.76 36 30.98 13484.47 35 33.47
nw04 2 29.75 14400.45 3 30.66 14400.67 4 29.90 14400.25 3 29.81

p0033 4 34.42 2.98 19 60.03 Y 3.33 34 71.45 Y 3.50 40 100.00 Y
p0201 14 0.39 0.54 18 0.39 Y 154.75 30 15.73 Y 224.28 21 16.00 Y
p0282 23 3.19 121.07 54 14.67 Y 2824.43 225 41.51 Y 1108.30 118 45.70
p0548 31 60.67 4.60 81 97.17 Y 9.83 96 99.88 Y 21.01 91 99.88 Y
pp08a 53 51.44 0.20 46 51.44 Y 3.11 83 75.18 Y 9.96 106 80.42 Y

pp08acuts 41 31.52 44.59 30 31.94 2531.02 42 44.12 2793.51 59 52.97
qiu 23 1.70 14402.38 15 1.70 14400.07 15 1.70 14400.77 15 1.70

qnet1 17 15.76 14409.04 10 16.00 14400.69 10 15.90 14401.61 9 15.90
qnet1 o 10 26.43 2257.79 91 31.53 14402.04 24 28.53 14400.76 20 27.07

rentacar 13 4.97 14401.84 8 4.97 14400.84 7 11.52 14404.37 7 14.98
rgn 12 5.02 16.49 11 10.00 Y 25.70 34 25.10 Y 569.58 38 25.10 Y

rout 30 1.40 14404.44 13 1.82 14400.06 7 1.40 14400.56 7 1.40
set1ch 121 28.20 1.11 120 28.20 Y 25.18 143 60.75 Y 94.96 196 82.52 Y

seymour 60 4.98 3011.23 16 5.27 Y 14401.19 18 4.98 14401.94 18 4.98
swath 13 6.37 383.46 24 11.39 14401.00 17 12.21 14400.86 17 12.21
vpm1 15 6.18 0.15 10 6.54 Y 5.00 24 15.95 Y 18.89 32 21.59 Y
vpm2 21 7.31 0.92 20 8.11 Y 13.76 39 29.38 Y 69.56 53 32.54 Y
avg. 29.673 21.607 4788.231 38.308 24.905 46% 7611.898 52.596 32.981 37% 8250.544 53.519 36.399 29%

geom. 17.908 0.000 124.481 18.024 12.747 - 1184.855 21.008 0.000 - 1852.224 22.065 0.000 -

Table 5.20: Cuts from full multi-row models, part 1
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4-row cuts 5-row cuts
name GMIs GMI %gc time cuts (t) %gc proof time cuts (t) %gc proof

10teams 101 57.14 14419.40 4 57.14 14403.86 4 57.14
air04 100 7.90 14400.98 13 7.90 14400.98 13 7.90
air05 101 4.63 14400.99 8 4.63 14400.32 8 4.63

arki001 7 0.00 14401.09 9 0.00 14407.15 11 0.00
bell3a 14 39.03 133.09 22 54.90 130.74 24 56.82
bell5 17 14.53 101.52 15 20.50 Y 147.44 15 20.50 Y

blend2 5 16.04 14400.00 8 16.96 14400.23 23 20.78
cap6000 2 39.91 14400.89 2 39.91 14400.90 2 39.91
danoint 32 0.26 14400.07 5 0.26 14400.04 5 0.26
dcmulti 36 47.80 14400.01 33 50.87 14400.24 34 49.71

egout 8 31.94 1.22 18 98.36 Y 0.93 23 100.00 Y
fast0507 101 1.64 14401.08 8 1.64 14401.03 8 1.64

fiber 22 69.20 14400.02 153 81.25 14400.13 189 81.30
fixnet6 11 22.26 14400.34 10 22.31 14400.17 9 22.31
flugpl 7 10.75 5.72 10 99.16 Y 5.33 11 100.00 Y

gen 6 1.27 14400.02 80 85.16 14400.00 59 85.16
gesa3 37 20.48 14400.01 164 36.13 14400.01 131 36.01

gesa3 o 64 50.54 14400.01 156 61.16 14400.08 106 60.76
gt2 11 47.22 14400.28 58 56.45 14400.26 38 58.34

harp2 22 22.81 14400.72 20 22.81 14400.05 20 22.81
khb05250 19 73.16 14400.27 27 79.43 14400.32 23 77.04
l152lav 7 2.01 14400.05 8 2.96 14400.64 8 2.57

lseu 5 20.48 3962.76 50 82.13 Y 1850.72 103 82.13 Y
mas74 11 6.67 1672.66 7 6.67 1971.52 7 6.67
mas76 10 6.42 2241.36 6 6.42 1932.36 6 6.42

misc03 4 8.62 176.69 18 8.62 Y 56.63 8 8.62 Y
misc06 16 28.48 14401.57 17 47.64 14400.69 16 48.81
misc07 5 0.72 31.64 13 0.72 Y 298.76 21 0.72 Y
mitre 101 50.71 14404.67 652 83.11 14419.11 580 76.64

mkc 34 0.96 14400.13 53 1.04 14400.58 37 0.96
mod008 5 21.62 1965.00 1 21.62 5906.68 2 21.70
mod011 21 30.69 14412.28 16 30.69 14417.21 16 30.69

modglob 28 17.28 14449.54 65 32.97 14400.04 66 31.50
nw04 2 29.75 14400.60 2 29.75 14400.03 2 29.75

p0033 4 34.42 6.34 31 100.00 Y 6.39 21 100.00 Y
p0201 14 0.39 2072.63 49 17.83 Y 2232.62 35 17.83 Y
p2756 80 56.96 120.55 144 76.99 601.95 231 77.21 Y
pp08a 53 51.44 9.46 114 83.18 Y 20.04 113 83.47 Y

pp08acuts 41 31.52 5770.35 60 53.82 12352.69 93 54.15
qiu 23 1.70 14401.77 15 1.70 14400.65 16 1.70

qnet1 17 15.76 14409.23 7 15.76 14400.50 7 15.76
qnet1 o 10 26.43 14400.01 18 26.97 14400.42 14 26.96

rentacar 13 4.97 14400.06 7 4.97 15884.17 7 4.97
rgn 12 5.02 861.30 27 26.71 3465.41 34 27.06

rout 30 1.40 14400.28 6 1.40 14400.09 7 1.40
set1ch 121 28.20 181.18 200 89.11 Y 420.74 198 90.46 Y

seymour 60 4.98 14400.71 18 4.98 14400.56 18 4.98
swath 13 6.37 14400.13 16 6.37 14400.08 22 23.82
vpm1 15 6.18 15.96 34 26.79 Y 41.07 43 41.59 Y
vpm2 21 7.31 127.00 88 39.13 566.90 103 41.01

average 29.980 21.719 9319.273 51.300 36.540 22% 9598.989 51.800 37.251 24%
geometric 17.671 0.000 2574.734 20.977 0.000 - 3110.291 21.815 0.000 -

Table 5.21: Cuts from full multi-row models, part 2
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6-row cuts 7-row cuts
name GMIs GMI %gc time cuts (t) %gc proof time cuts (t) %gc proof

10teams 101 57.14 14430.76 4 57.14 14444.12 4 57.14
air04 100 7.90 14400.92 13 7.90 14400.94 13 7.90
air05 101 4.63 14400.98 8 4.63 14400.99 8 4.63

arki001 7 0.00 14402.49 11 0.00 14402.08 10 0.00
bell3a 14 39.03 125.19 24 56.80 108.43 26 56.82
bell5 17 14.53 133.38 15 20.50 Y 176.68 16 20.50 Y

blend2 5 16.04 14400.01 18 21.33 14400.25 60 21.19
cap6000 2 39.91 14400.99 2 39.91 14400.07 2 39.91
danoint 32 0.26 14400.17 5 0.26 14401.17 5 0.26
dcmulti 36 47.80 14400.29 28 50.91 14400.09 35 52.87

egout 8 31.94 1.06 26 100.00 Y 1.07 40 100.00 Y
fast0507 101 1.64 14401.05 8 1.64 14401.07 8 1.64

fiber 22 69.20 14400.53 361 82.69 14400.06 256 82.11
fixnet6 11 22.26 14400.39 9 22.31 14400.25 9 22.29
flugpl 7 10.75 49.48 14 100.00 Y 5.85 11 100.00 Y

gen 6 1.27 14400.02 13 70.86 14400.05 15 62.64
gesa2 o 70 30.68 14400.01 208 67.97 14400.16 243 64.91
gesa3 37 20.48 14400.03 126 36.13 14400.02 89 36.01

gesa3 o 64 50.54 14400.03 98 56.27 14400.01 98 56.24
gt2 11 47.22 14400.13 16 52.21 14400.14 18 52.21

harp2 22 22.81 14404.23 20 22.81 14400.66 20 22.81
khb05250 19 73.16 14400.60 20 74.53 14400.94 18 74.53
l152lav 7 2.01 14400.94 7 2.76 14400.06 6 2.37

lseu 5 20.48 7822.41 91 85.81 Y 5507.89 84 85.81
mas74 11 6.67 1618.89 7 6.67 1691.01 7 6.67
mas76 10 6.42 4692.80 6 6.42 6304.31 6 6.42

misc03 4 8.62 59.45 11 8.62 Y 79.55 12 8.62 Y
misc06 16 28.48 14400.19 17 47.54 14401.30 17 47.62
misc07 5 0.72 530.71 21 0.72 209.12 50 0.72 Y
mitre 101 50.71 14407.72 565 84.26 2311.63 547 100.00 Y

mkc 34 0.96 14400.48 47 1.04 14400.20 49 1.65
mod011 21 30.69 14420.41 16 30.69 14437.35 16 30.69

modglob 28 17.28 14400.08 58 30.54 14400.01 62 31.65
nw04 2 29.75 14401.02 2 29.75 14400.32 2 29.75

p0033 4 34.42 4.59 27 100.00 Y 5.21 23 100.00 Y
p0201 14 0.39 1538.32 53 17.83 Y 4333.38 40 17.83 Y
p2756 80 56.96 628.48 275 77.21 Y 670.78 267 77.21
pp08a 53 51.44 22.16 117 83.18 Y 26.62 119 83.47 Y

pp08acuts 41 31.52 6794.67 75 54.62 5601.99 95 55.20
qiu 23 1.70 14400.75 15 1.70 14402.36 14 1.70

qnet1 17 15.76 14405.61 7 15.76 14400.75 7 15.76
qnet1 o 10 26.43 14400.23 12 26.91 14400.73 9 26.88

rentacar 13 4.97 14402.10 7 4.97 14404.95 7 4.97
rgn 12 5.02 2486.13 65 30.45 Y 5048.14 34 30.76

rout 30 1.40 14400.12 7 1.40 14402.88 7 1.40
set1ch 121 28.20 218.59 188 92.19 Y 355.31 184 92.19 Y

seymour 60 4.98 14400.09 18 4.98 14402.19 18 4.98
swath 13 6.37 14401.38 21 14.01 14401.64 17 12.21
vpm1 15 6.18 586.93 56 54.05 92.93 56 54.05 Y

average 31.490 22.198 9963.224 57.918 37.977 22% 9776.280 56.306 38.106 22%
geometric 18.583 0.000 3660.620 22.952 0.000 - 3380.613 23.248 0.000 -

Table 5.22: Cuts from full multi-row models, part 3
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10-row cuts 15-row cuts
name GMIs GMI %gc time cuts (t) %gc proof time cuts (t) %gc proof

10teams 101 57.14 14432.84 4 57.14 14434.87 4 57.14
air04 100 7.90 14401.00 13 7.90 14400.95 13 7.90
air05 101 4.63 14400.92 8 4.63 14400.86 8 4.63

arki001 7 0.00 14403.64 10 0.00 14401.99 7 0.00
bell3a 14 39.03 268.31 26 56.89 154.26 23 58.67 Y
bell5 17 14.53 219.30 16 20.50 Y 585.25 16 21.68 Y

blend2 5 16.04 14400.03 27 21.24 14400.04 41 21.43
cap6000 2 39.91 14401.01 2 39.91 14402.61 2 39.91
danoint 32 0.26 14400.60 5 0.26 14400.38 5 0.26
dcmulti 36 47.80 14400.02 32 49.77 14400.15 33 50.79

egout 8 31.94 1.96 32 100.00 Y 4.04 29 100.00 Y
fast0507 101 1.64 14401.07 8 1.64 14401.07 8 1.64

fiber 22 69.20 14400.05 108 82.25 14400.98 115 81.58
fixnet6 11 22.26 14400.42 9 22.31 14400.18 9 22.31

gen 6 1.27 14400.07 19 10.33 14400.01 25 73.17
gesa2 o 70 30.68 14400.02 221 67.62 14400.04 164 62.50
gesa3 37 20.48 14400.03 72 36.02 14400.04 63 33.90

gesa3 o 64 50.54 14400.09 87 55.58 14400.05 65 52.05
gt2 11 47.22 14400.33 14 47.68 3262.71 7 47.22

harp2 22 22.81 14400.95 20 22.81 14400.22 20 22.81
khb05250 19 73.16 14406.43 15 73.16 14401.18 15 73.16
l152lav 7 2.01 14400.02 6 2.31 14400.04 6 2.46

lseu 5 20.48 3999.64 9 20.71 2034.85 6 20.48
misc03 4 8.62 1625.14 25 9.08 Y 6581.97 142 10.49 Y
misc06 16 28.48 14400.06 17 39.55 14401.17 14 28.48
misc07 5 0.72 527.93 49 0.72 Y 3548.89 109 0.80 Y
mitre 101 50.71 2681.02 508 100.00 Y 14400.91 444 79.03

mkc 34 0.96 14400.15 49 1.65 14400.05 52 1.65
mod011 21 30.69 14443.40 16 30.69 14416.87 16 30.69

modglob 28 17.28 14400.60 65 24.81 14400.02 25 18.66
nw04 2 29.75 14400.99 2 29.75 14400.95 2 29.75

p0201 14 0.39 9024.90 37 17.83 Y 14400.13 34 13.48
p0282 23 3.19 14400.11 122 97.57 14400.03 120 97.08
p0548 31 60.67 586.90 116 99.95 Y 4732.70 102 100.00 Y
p2756 80 56.96 689.73 324 77.21 Y 964.46 258 77.21 Y
pp08a 53 51.44 49.08 118 83.48 Y 550.81 152 84.56

pp08acuts 41 31.52 11938.10 140 56.50 14400.08 134 61.64
qiu 23 1.70 14404.50 14 1.70 14400.83 14 1.70

qnet1 17 15.76 14401.00 7 15.76 14401.52 7 15.76
qnet1 o 10 26.43 14400.83 9 26.89 14400.01 9 26.86

rgn 12 5.02 861.45 82 33.57 Y 4183.80 71 42.01 Y
rout 30 1.40 14400.99 6 1.40 14400.61 6 1.40

set1ch 121 28.20 785.66 189 92.19 Y 1075.44 186 92.19 Y
seymour 60 4.98 14400.36 22 7.09 14400.24 18 4.98

swath 13 6.37 14401.36 20 23.82 14400.01 20 23.82
vpm1 15 6.18 684.69 80 54.94 297.65 69 57.94 Y

average 33.739 23.660 10444.515 60.435 37.539 24% 10940.129 58.435 38.171 22%
geometric 20.600 0.000 5199.588 26.259 0.000 - 6537.140 25.662 0.000 -

Table 5.23: Cuts from full multi-row models, part 4

GMI 1-row 2-row 3-row 4-row 5-row 6-row 7-row 10-row 15-row
name %gc %gc %gc %gc %gc %gc %gc %gc %gc %gc
bell5 14.53 18.71 19.32 20.50 20.50 20.50 20.50 20.50 20.50 21.68
egout 31.94 36.39 62.24 84.97 98.36 100.00 100.00 100.00 100.00 100.00

misc03 8.62 8.62 8.62 8.62 8.62 8.62 8.62 8.62 9.08 10.49
set1ch 28.20 28.20 60.75 82.52 89.11 90.46 92.19 92.19 92.19 92.19

average 20.822 22.980 37.733 49.153 54.148 54.895 55.328 55.328 55.443 56.090

Table 5.24: Gap closed, 4 instances with exact separation
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Figure 5.7: Number of cuts generated (♦) and tight at the end (�) on 42 instances

5.12 Summary

In this chapter, we implemented a separator for arbitrary mixed-integer sets. Computationally, the task is

inherently costly, and a separator with such a generic scope is bound to be slow in practice. But our first

naive implementation was unable to provide meaningful results, even for some of the smallest instances

in MIPLIB 3. To partially mitigate the issue we developed a series of tricks, that are mainly based on the

concept of lifting inequalities that are valid for projections of the feasible region. As a result, we obtain

an improved version of our code that is over 14 times faster in geometric mean on 13 small benchmark

instances (Table 5.8). More importantly, given a time limit of four hours per instance, we show that our

improved code yields an exact value of the gap closure in 9 of the 13 instances, up from 5 in our initial

implementation.

Using our separator, we show that on average over our testset, two-row intersection cuts close around 5%

more gap than GMIs. Further, cuts from fully-strengthened two-row models close an additional 8% gap.

We remark however that strengthening only partially the two-row models yields almost no improvement

over intersection cuts. We then try generating GMIs and two-row cuts from several feasible bases of the

LP relaxation, with surprisingly similar results. This leads us to conclude that the usefulness of two-row

cuts, although limited, is not canceled by the effect of GMIs when considering cuts from several tableaux.

We then use our implementation to separate multi-row cuts with more than two rows. The running times

show that the separator scales acceptably to up to 15 rows. On the other hand, the percentage of gap

closure we obtain seems to tail off after 4- or 5-row cuts, indicating that there would be little interest in
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generating multi-row cuts with more than 5 rows (at least if still less than 15).





Chapter 6

Conclusions

6.1 Context of this thesis

The feasible region of mixed-integer linear programming problems (MIPs) is described as the intersection

of a polyhedron (called the linear relaxation, and defined by a finite number of linear constraints),

with integrality constraints on some of the variables. These problems are typically best solved using

enumeration techniques such as the branch-and-bound method.

But three additional components have become essential to mixed-integer linear programming, and have

driven the tremendous improvements that MIP solvers have known in the last 20 years:

1. preprocessing, that mainly reduces the size of the formulations and enhances their numerical sta-

bility,

2. primal heuristics, that provide fast methods for finding good feasible solutions, and

3. cutting planes, the subject of this thesis.

Cutting planes are simply linear constraints that are added to the formulation of a MIP, without affecting

its feasible region. Their name comes from the fact that they cut part of the linear relaxation polyhedron.

The first cutting planes methods were developed by Gomory in 1960 [46, 47, 48]. He saw them as a

stand-alone way of solving MIPs, by iteratively strengthening the linear relaxation until it describes the

convex hull of the mixed-integer solutions. Computationally, these methods were plagued with numerical

instabilities, and were widely considered impractical in the MIP research community. But in 1993, Balas,

Ceria and Cornuéjols [9] discovered that adding cuts to strengthen a linear relaxation prior to performing

branch-and-bound made the latter much faster in many cases.

Since then, many different types of cutting planes have been studied, and a dozen of them have made

their way into MIP resolution codes. Among the most successful are one of Gomory’s initial proposals,

known as Gomory’s mixed integer cut (GMI [47]), and a variant due to Nemhauser and Wolsey, called
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the mixed-integer rounding cut (MIR [67]). Most of these cuts share one property: they can be derived

from one linear constraint that is valid for the linear relaxation.

In 2007, a paper by Andersen, Louveaux, Weismantel and Wolsey [4] sparked a wide interest among

researchers looking for new ways of generating cuts. The paper exploits the concept of intersection

cut developed by Balas in 1970 [7] and the concept of corner relaxation introduced by Gomory and

Johnson [50, 51, 52]. It presents a simple setting where a single cut derived from two linear constraints

of the linear relaxation is more effective than any number of cuts derived from a single linear constraint.

These specific types of intersection cuts are since commonly referred to as multi-row cuts.

This thesis centers on the computational aspects of multi-row cuts.

6.2 Content of this thesis

Throughout this thesis, we have adopted the intersection cut point-of-view on multi-row cuts, and we

studied ways to exploit and evaluate computationally this framework.

In Chapter 3, we devise a method for the separation of two-row intersection cuts. In the process, we

propose a compact formulation for the polar set of the integer hull of the intersection cut model. We also

describe a row-generation algorithm for optimizing over that polar set, including a closed-form oracle for

finding violated rows of the description of the polar. We show that our implementation of this method is

fast and works in practice. Moreover, our two-row cuts separator is exact, in the sense that it is able to

find a violated facet-defining inequality whenever one exists. Therefore, it permits an accurate estimation

of the strength of the two-row intersection cut model itself. In particular, our results indicate that this

model may be too weak to generate useful cuts. Hence, in Chapter 4, we review the various ways that

have been proposed to strengthen the intersection cut model, and perform a first rough experiment to

evaluate their respective value. In Chapter 5, in need for a more precise assessment, we set upon the task

of developing a generic, exact separator for arbitrary mixed-integer sets. We use this new tool to refine

our computational understanding of the various models involved.

All our results converge towards a few conclusions. Gomory’s mixed-integer cuts are a formidable asset in

the arsenal of mixed-integer linear programming solvers. Besides GMIs, our computational data indicates

that there is a room for the use of two-row cuts in practice, if strengthened to the fullest extent possible.

However, a lot of work remains to be done before the effective separation of such strengthened two-row

cuts becomes tractable (we can of course separate them with our generic separator, but not fast enough

for practical purposes). Mainly, the works in Chapter 3 should be extended to the S-free case, and more

explorations are necessary towards a generic implementation for solving the two-row lifting problem.

Even then, while two-row cuts may have one day their place among the few other families of cutting

that are exploited in general-purpose MIP solvers, we show that they will probably not constitute the

revolution that the incorporation of GMIs represented for the resolution of MIPs. Nor would, according

to our data, intersection cuts from few simplex tableau rows.
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6.3 Further research

Two important questions arise from the conclusions of this thesis. The first is how to best select models to

separate cuts from. We proposed various heuristics for selecting rows from a simplex tableau in Chapter 3

and Chapter 5. We also considered tableaux corresponding to different feasible bases in Chapter 5. But

one can imagine other heuristics, and more importantly more bases. In particular, cuts from infeasible

bases have proved very successful in the context of lift-and-project [11]. Furthermore, the models do not

necessarily need to come from tableaux. Even taking linear combinations of tableau rows may already

yield useful results, as MIR cuts have shown [67].

The second question is how to discriminate between the MIP problems where multi-row cuts may be

useful and the ones where they may not. Our results (e.g. Tables 3.4, 3.5, 5.11 and 5.19) show a

huge variance of the impact of multi-row cuts across different instances. The structure of the instances

probably plays a role in this phenomenon, but we are not yet able to characterize this structure so as to

understand the links with the efficacy of multi-row cuts.

In the longer term, there are a number of promising alternative approaches for cutting planes generation.

While we mentioned the notion of infinite relaxation in a few places, we never took that point-of-view.

We always worked on models with few rows and required exact separation from the models. Instead, in

the context of the infinite relaxation introduced by Gomory and Johnson [51], this requirement is dropped

in favour of a weaker one: the generation of facet-defining inequalities for an infinite relaxation of the

model. This trade-off enables the computation of the cuts in closed-form. We know that multi-row cuts

from few rows only offer limited prospects, but it is conceivable that, adopting that point-of-view, we

could generate cuts from very large models, maybe up to the size of the original MIP.

The recent work of Balas and Margot [12] generalizes the concept of intersection cuts to models that

are more complex. An interesting feature of the technique developed is that the cuts are represented

internally by their intersection points with the LP relaxation [13]. Such a representation may present

very enticing properties from a computational perspective, as it may reduce the impact of numerical

errors.

Further departing from classical approaches, Dey and Pokutta [36] lay the theoretical foundations of a

new framework for cut generation. Their idea is to first design inequalities that have desirable properties

but may be invalid, and then check their validity. A lot of practical questions remain open about how to

generate such cuts computationally.

While expectations should not be overblown, we hope that this thesis brings indications that cutting

planes have not yet reached their fullest potential, and provides a few pointers to promising directions.
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[10] Egon Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations Research

Letters, (19):1–9, 1996.

[11] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algorithm for
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